non-abelian, soluble, monomial
Aliases: Q8⋊3S4, A4⋊3SD16, A4⋊C8⋊3C2, C4⋊S4.2C2, C4.4(C2×S4), (Q8×A4)⋊1C2, (C2×A4).10D4, (C22×Q8)⋊1S3, (C22×C4).4D6, (C4×A4).4C22, C22⋊(Q8⋊2S3), C2.7(A4⋊D4), C23.20(C3⋊D4), SmallGroup(192,976)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊3S4
G = < a,b,c,d,e,f | a4=c2=d2=e3=f2=1, b2=a2, bab-1=faf=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, fbf=a-1b, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 354 in 77 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, Q8, C23, C23, C12, A4, D6, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C3⋊C8, D12, C3×Q8, S4, C2×A4, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, Q8⋊2S3, C4×A4, C4×A4, C2×S4, Q8⋊D4, A4⋊C8, C4⋊S4, Q8×A4, Q8⋊3S4
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊D4, S4, Q8⋊2S3, C2×S4, A4⋊D4, Q8⋊3S4
Character table of Q8⋊3S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 12C | |
size | 1 | 1 | 3 | 3 | 24 | 8 | 2 | 4 | 6 | 12 | 24 | 8 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | -2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | 0 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | 0 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ12 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | -3 | -1 | 1 | 1 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ13 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 1 | 0 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ14 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | 3 | -1 | -1 | -1 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ15 | 3 | 3 | -1 | -1 | 1 | 0 | 3 | -3 | -1 | 1 | -1 | 0 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ16 | 4 | -4 | -4 | 4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ17 | 6 | 6 | -2 | -2 | 0 | 0 | -6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
ρ18 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | complex faithful |
ρ19 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 23 3 21)(2 22 4 24)(5 16 7 14)(6 15 8 13)(9 19 11 17)(10 18 12 20)
(1 3)(2 4)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 11 16)(2 12 13)(3 9 14)(4 10 15)(5 21 19)(6 22 20)(7 23 17)(8 24 18)
(2 4)(5 20)(6 19)(7 18)(8 17)(9 14)(10 13)(11 16)(12 15)(21 22)(23 24)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,11,16)(2,12,13)(3,9,14)(4,10,15)(5,21,19)(6,22,20)(7,23,17)(8,24,18), (2,4)(5,20)(6,19)(7,18)(8,17)(9,14)(10,13)(11,16)(12,15)(21,22)(23,24)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,11,16)(2,12,13)(3,9,14)(4,10,15)(5,21,19)(6,22,20)(7,23,17)(8,24,18), (2,4)(5,20)(6,19)(7,18)(8,17)(9,14)(10,13)(11,16)(12,15)(21,22)(23,24) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,23,3,21),(2,22,4,24),(5,16,7,14),(6,15,8,13),(9,19,11,17),(10,18,12,20)], [(1,3),(2,4),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,11,16),(2,12,13),(3,9,14),(4,10,15),(5,21,19),(6,22,20),(7,23,17),(8,24,18)], [(2,4),(5,20),(6,19),(7,18),(8,17),(9,14),(10,13),(11,16),(12,15),(21,22),(23,24)]])
G:=TransitiveGroup(24,326);
Matrix representation of Q8⋊3S4 ►in GL5(𝔽73)
72 | 12 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 72 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 72 |
0 | 0 | 1 | 0 | 72 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
61 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [72,12,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,72,72,72,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,72,72,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,72,72,0,0,1,0,0,0,0,0,0,1],[1,61,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
Q8⋊3S4 in GAP, Magma, Sage, TeX
Q_8\rtimes_3S_4
% in TeX
G:=Group("Q8:3S4");
// GroupNames label
G:=SmallGroup(192,976);
// by ID
G=gap.SmallGroup(192,976);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,85,64,254,135,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^2=d^2=e^3=f^2=1,b^2=a^2,b*a*b^-1=f*a*f=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^-1*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export