Copied to
clipboard

G = A4×Q16order 192 = 26·3

Direct product of A4 and Q16

direct product, metabelian, soluble, monomial

Aliases: A4×Q16, C8.1(C2×A4), C2.8(D4×A4), (C22×C8).C6, (C22×Q16)⋊C3, C22⋊(C3×Q16), (C8×A4).2C2, (Q8×A4).2C2, Q8.3(C2×A4), (C2×A4).16D4, C4.3(C22×A4), C23.25(C3×D4), (C22×Q8).4C6, (C4×A4).19C22, (C22×C4).3(C2×C6), SmallGroup(192,1016)

Series: Derived Chief Lower central Upper central

C1C22×C4 — A4×Q16
C1C22C23C22×C4C4×A4Q8×A4 — A4×Q16
C22C23C22×C4 — A4×Q16
C1C2C4Q16

Generators and relations for A4×Q16
 G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 224 in 73 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2×C4, Q8, Q8, C23, C12, A4, C2×C8, Q16, Q16, C22×C4, C22×C4, C2×Q8, C24, C3×Q8, C2×A4, C22×C8, C2×Q16, C22×Q8, C3×Q16, C4×A4, C4×A4, C22×Q16, C8×A4, Q8×A4, A4×Q16
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, Q16, C3×D4, C2×A4, C3×Q16, C22×A4, D4×A4, A4×Q16

Character table of A4×Q16

 class 12A2B2C3A3B4A4B4C4D4E4F6A6B8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 1133442446121244226688161616168888
ρ11111111111111111111111111111    trivial
ρ21111111-1-11-1-111111111-1-1-1-11111    linear of order 2
ρ31111111-111-1111-1-1-1-1111-1-11-1-1-1-1    linear of order 2
ρ411111111-111-111-1-1-1-111-111-1-1-1-1-1    linear of order 2
ρ51111ζ32ζ3111111ζ32ζ31111ζ32ζ3ζ32ζ32ζ3ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ61111ζ32ζ31-111-11ζ32ζ3-1-1-1-1ζ32ζ3ζ32ζ6ζ65ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ71111ζ3ζ321-111-11ζ3ζ32-1-1-1-1ζ3ζ32ζ3ζ65ζ6ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ81111ζ3ζ321-1-11-1-1ζ3ζ321111ζ3ζ32ζ65ζ65ζ6ζ6ζ3ζ3ζ32ζ32    linear of order 6
ρ91111ζ32ζ311-111-1ζ32ζ3-1-1-1-1ζ32ζ3ζ6ζ32ζ3ζ65ζ6ζ6ζ65ζ65    linear of order 6
ρ101111ζ3ζ32111111ζ3ζ321111ζ3ζ32ζ3ζ3ζ32ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ111111ζ32ζ31-1-11-1-1ζ32ζ31111ζ32ζ3ζ6ζ6ζ65ζ65ζ32ζ32ζ3ζ3    linear of order 6
ρ121111ζ3ζ3211-111-1ζ3ζ32-1-1-1-1ζ3ζ32ζ65ζ3ζ32ζ6ζ65ζ65ζ6ζ6    linear of order 6
ρ13222222-200-200220000-2-200000000    orthogonal lifted from D4
ρ142-2-2222000000-2-22-2-22000000-22-22    symplectic lifted from Q16, Schur index 2
ρ152-2-2222000000-2-2-222-20000002-22-2    symplectic lifted from Q16, Schur index 2
ρ162222-1--3-1+-3-200-200-1--3-1+-300001+-31--300000000    complex lifted from C3×D4
ρ172222-1+-3-1--3-200-200-1+-3-1--300001--31+-300000000    complex lifted from C3×D4
ρ182-2-22-1+-3-1--30000001--31+-32-2-22000000ζ83ζ38ζ3ζ87ζ385ζ3ζ83ζ328ζ32ζ87ζ3285ζ32    complex lifted from C3×Q16
ρ192-2-22-1--3-1+-30000001+-31--3-222-2000000ζ87ζ3285ζ32ζ83ζ328ζ32ζ87ζ385ζ3ζ83ζ38ζ3    complex lifted from C3×Q16
ρ202-2-22-1+-3-1--30000001--31+-3-222-2000000ζ87ζ385ζ3ζ83ζ38ζ3ζ87ζ3285ζ32ζ83ζ328ζ32    complex lifted from C3×Q16
ρ212-2-22-1--3-1+-30000001+-31--32-2-22000000ζ83ζ328ζ32ζ87ζ3285ζ32ζ83ζ38ζ3ζ87ζ385ζ3    complex lifted from C3×Q16
ρ2233-1-10033-3-1-1100-3-3110000000000    orthogonal lifted from C2×A4
ρ2333-1-100333-1-1-10033-1-10000000000    orthogonal lifted from A4
ρ2433-1-1003-33-11-100-3-3110000000000    orthogonal lifted from C2×A4
ρ2533-1-1003-3-3-1110033-1-10000000000    orthogonal lifted from C2×A4
ρ2666-2-200-6002000000000000000000    orthogonal lifted from D4×A4
ρ276-62-2000000000032-322-20000000000    symplectic faithful, Schur index 2
ρ286-62-20000000000-3232-220000000000    symplectic faithful, Schur index 2

Smallest permutation representation of A4×Q16
On 48 points
Generators in S48
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)
(1 34 43)(2 35 44)(3 36 45)(4 37 46)(5 38 47)(6 39 48)(7 40 41)(8 33 42)(9 19 32)(10 20 25)(11 21 26)(12 22 27)(13 23 28)(14 24 29)(15 17 30)(16 18 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 41 13 45)(10 48 14 44)(11 47 15 43)(12 46 16 42)(25 39 29 35)(26 38 30 34)(27 37 31 33)(28 36 32 40)

G:=sub<Sym(48)| (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48), (1,34,43)(2,35,44)(3,36,45)(4,37,46)(5,38,47)(6,39,48)(7,40,41)(8,33,42)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40)>;

G:=Group( (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48), (1,34,43)(2,35,44)(3,36,45)(4,37,46)(5,38,47)(6,39,48)(7,40,41)(8,33,42)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40) );

G=PermutationGroup([[(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48)], [(1,34,43),(2,35,44),(3,36,45),(4,37,46),(5,38,47),(6,39,48),(7,40,41),(8,33,42),(9,19,32),(10,20,25),(11,21,26),(12,22,27),(13,23,28),(14,24,29),(15,17,30),(16,18,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,41,13,45),(10,48,14,44),(11,47,15,43),(12,46,16,42),(25,39,29,35),(26,38,30,34),(27,37,31,33),(28,36,32,40)]])

Matrix representation of A4×Q16 in GL5(𝔽73)

10000
01000
00010
00100
00727272
,
10000
01000
00001
00727272
00100
,
80000
08000
00800
00656565
00080
,
4554000
2760000
007200
000720
000072
,
1958000
2954000
00100
00010
00001

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[8,0,0,0,0,0,8,0,0,0,0,0,8,65,0,0,0,0,65,8,0,0,0,65,0],[45,27,0,0,0,54,60,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[19,29,0,0,0,58,54,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×Q16 in GAP, Magma, Sage, TeX

A_4\times Q_{16}
% in TeX

G:=Group("A4xQ16");
// GroupNames label

G:=SmallGroup(192,1016);
// by ID

G=gap.SmallGroup(192,1016);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,168,197,176,1011,514,80,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of A4×Q16 in TeX

׿
×
𝔽