direct product, metabelian, soluble, monomial
Aliases: A4×Q16, C8.1(C2×A4), C2.8(D4×A4), (C22×C8).C6, (C22×Q16)⋊C3, C22⋊(C3×Q16), (C8×A4).2C2, (Q8×A4).2C2, Q8.3(C2×A4), (C2×A4).16D4, C4.3(C22×A4), C23.25(C3×D4), (C22×Q8).4C6, (C4×A4).19C22, (C22×C4).3(C2×C6), SmallGroup(192,1016)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4×Q16
G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 224 in 73 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2×C4, Q8, Q8, C23, C12, A4, C2×C8, Q16, Q16, C22×C4, C22×C4, C2×Q8, C24, C3×Q8, C2×A4, C22×C8, C2×Q16, C22×Q8, C3×Q16, C4×A4, C4×A4, C22×Q16, C8×A4, Q8×A4, A4×Q16
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, Q16, C3×D4, C2×A4, C3×Q16, C22×A4, D4×A4, A4×Q16
Character table of A4×Q16
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 2 | 4 | 4 | 6 | 12 | 12 | 4 | 4 | 2 | 2 | 6 | 6 | 8 | 8 | 16 | 16 | 16 | 16 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ11 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -2 | 0 | 0 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ17 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -2 | 0 | 0 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ18 | 2 | -2 | -2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | complex lifted from C3×Q16 |
ρ19 | 2 | -2 | -2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | complex lifted from C3×Q16 |
ρ20 | 2 | -2 | -2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | complex lifted from C3×Q16 |
ρ21 | 2 | -2 | -2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | complex lifted from C3×Q16 |
ρ22 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ23 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ24 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | -3 | 3 | -1 | 1 | -1 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ25 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | -3 | -3 | -1 | 1 | 1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ26 | 6 | 6 | -2 | -2 | 0 | 0 | -6 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×A4 |
ρ27 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√2 | -3√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ28 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3√2 | 3√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)
(1 34 43)(2 35 44)(3 36 45)(4 37 46)(5 38 47)(6 39 48)(7 40 41)(8 33 42)(9 19 32)(10 20 25)(11 21 26)(12 22 27)(13 23 28)(14 24 29)(15 17 30)(16 18 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 41 13 45)(10 48 14 44)(11 47 15 43)(12 46 16 42)(25 39 29 35)(26 38 30 34)(27 37 31 33)(28 36 32 40)
G:=sub<Sym(48)| (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48), (1,34,43)(2,35,44)(3,36,45)(4,37,46)(5,38,47)(6,39,48)(7,40,41)(8,33,42)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40)>;
G:=Group( (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48), (1,34,43)(2,35,44)(3,36,45)(4,37,46)(5,38,47)(6,39,48)(7,40,41)(8,33,42)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40) );
G=PermutationGroup([[(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48)], [(1,34,43),(2,35,44),(3,36,45),(4,37,46),(5,38,47),(6,39,48),(7,40,41),(8,33,42),(9,19,32),(10,20,25),(11,21,26),(12,22,27),(13,23,28),(14,24,29),(15,17,30),(16,18,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,41,13,45),(10,48,14,44),(11,47,15,43),(12,46,16,42),(25,39,29,35),(26,38,30,34),(27,37,31,33),(28,36,32,40)]])
Matrix representation of A4×Q16 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
8 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 65 | 65 | 65 |
0 | 0 | 0 | 8 | 0 |
45 | 54 | 0 | 0 | 0 |
27 | 60 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
19 | 58 | 0 | 0 | 0 |
29 | 54 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[8,0,0,0,0,0,8,0,0,0,0,0,8,65,0,0,0,0,65,8,0,0,0,65,0],[45,27,0,0,0,54,60,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[19,29,0,0,0,58,54,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4×Q16 in GAP, Magma, Sage, TeX
A_4\times Q_{16}
% in TeX
G:=Group("A4xQ16");
// GroupNames label
G:=SmallGroup(192,1016);
// by ID
G=gap.SmallGroup(192,1016);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,168,197,176,1011,514,80,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export