non-abelian, soluble, monomial
Aliases: A4⋊2Q16, Q8.3S4, A4⋊C8.C2, C4.3(C2×S4), (C2×A4).9D4, A4⋊Q8.2C2, (Q8×A4).1C2, C22⋊(C3⋊Q16), (C22×C4).3D6, (C4×A4).3C22, (C22×Q8).1S3, C2.6(A4⋊D4), C23.19(C3⋊D4), SmallGroup(192,975)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4⋊2Q16
G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, cac-1=dad-1=ab=ba, ae=ea, cbc-1=a, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=d-1 >
Subgroups: 262 in 70 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2×C4, Q8, Q8, C23, Dic3, C12, A4, C22⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C3⋊C8, Dic6, C3×Q8, C2×A4, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C3⋊Q16, A4⋊C4, C4×A4, C4×A4, C22⋊Q16, A4⋊C8, A4⋊Q8, Q8×A4, A4⋊2Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊D4, S4, C3⋊Q16, C2×S4, A4⋊D4, A4⋊2Q16
Character table of A4⋊2Q16
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 12C | |
size | 1 | 1 | 3 | 3 | 8 | 2 | 4 | 6 | 12 | 24 | 24 | 8 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | -1 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ9 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ10 | 2 | 2 | 2 | 2 | -1 | -2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ11 | 2 | 2 | 2 | 2 | -1 | -2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ12 | 3 | 3 | -1 | -1 | 0 | 3 | -3 | -1 | 1 | 1 | -1 | 0 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ13 | 3 | 3 | -1 | -1 | 0 | 3 | -3 | -1 | 1 | -1 | 1 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ14 | 3 | 3 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 1 | -1 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ15 | 3 | 3 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | -1 | 1 | 0 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ16 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
ρ17 | 6 | 6 | -2 | -2 | 0 | -6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
ρ18 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ19 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 9)(2 14)(3 11)(4 16)(5 13)(6 10)(7 15)(8 12)(17 32)(18 22)(19 26)(20 24)(21 28)(23 30)(25 29)(27 31)(33 42)(34 38)(35 44)(36 40)(37 46)(39 48)(41 45)(43 47)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 28)(18 29)(19 30)(20 31)(21 32)(22 25)(23 26)(24 27)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)
(1 42 20)(2 21 43)(3 44 22)(4 23 45)(5 46 24)(6 17 47)(7 48 18)(8 19 41)(9 37 27)(10 28 38)(11 39 29)(12 30 40)(13 33 31)(14 32 34)(15 35 25)(16 26 36)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 10 5 14)(2 9 6 13)(3 16 7 12)(4 15 8 11)(17 33 21 37)(18 40 22 36)(19 39 23 35)(20 38 24 34)(25 41 29 45)(26 48 30 44)(27 47 31 43)(28 46 32 42)
G:=sub<Sym(48)| (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,32)(18,22)(19,26)(20,24)(21,28)(23,30)(25,29)(27,31)(33,42)(34,38)(35,44)(36,40)(37,46)(39,48)(41,45)(43,47), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,42,20)(2,21,43)(3,44,22)(4,23,45)(5,46,24)(6,17,47)(7,48,18)(8,19,41)(9,37,27)(10,28,38)(11,39,29)(12,30,40)(13,33,31)(14,32,34)(15,35,25)(16,26,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,10,5,14)(2,9,6,13)(3,16,7,12)(4,15,8,11)(17,33,21,37)(18,40,22,36)(19,39,23,35)(20,38,24,34)(25,41,29,45)(26,48,30,44)(27,47,31,43)(28,46,32,42)>;
G:=Group( (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,32)(18,22)(19,26)(20,24)(21,28)(23,30)(25,29)(27,31)(33,42)(34,38)(35,44)(36,40)(37,46)(39,48)(41,45)(43,47), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,42,20)(2,21,43)(3,44,22)(4,23,45)(5,46,24)(6,17,47)(7,48,18)(8,19,41)(9,37,27)(10,28,38)(11,39,29)(12,30,40)(13,33,31)(14,32,34)(15,35,25)(16,26,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,10,5,14)(2,9,6,13)(3,16,7,12)(4,15,8,11)(17,33,21,37)(18,40,22,36)(19,39,23,35)(20,38,24,34)(25,41,29,45)(26,48,30,44)(27,47,31,43)(28,46,32,42) );
G=PermutationGroup([[(1,9),(2,14),(3,11),(4,16),(5,13),(6,10),(7,15),(8,12),(17,32),(18,22),(19,26),(20,24),(21,28),(23,30),(25,29),(27,31),(33,42),(34,38),(35,44),(36,40),(37,46),(39,48),(41,45),(43,47)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,28),(18,29),(19,30),(20,31),(21,32),(22,25),(23,26),(24,27),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45)], [(1,42,20),(2,21,43),(3,44,22),(4,23,45),(5,46,24),(6,17,47),(7,48,18),(8,19,41),(9,37,27),(10,28,38),(11,39,29),(12,30,40),(13,33,31),(14,32,34),(15,35,25),(16,26,36)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,10,5,14),(2,9,6,13),(3,16,7,12),(4,15,8,11),(17,33,21,37),(18,40,22,36),(19,39,23,35),(20,38,24,34),(25,41,29,45),(26,48,30,44),(27,47,31,43),(28,46,32,42)]])
Matrix representation of A4⋊2Q16 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
31 | 64 | 0 | 0 | 0 |
21 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
39 | 24 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[31,21,0,0,0,64,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[39,40,0,0,0,24,34,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72] >;
A4⋊2Q16 in GAP, Magma, Sage, TeX
A_4\rtimes_2Q_{16}
% in TeX
G:=Group("A4:2Q16");
// GroupNames label
G:=SmallGroup(192,975);
// by ID
G=gap.SmallGroup(192,975);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,56,85,64,254,135,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,c*a*c^-1=d*a*d^-1=a*b=b*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export