Extensions 1→N→G→Q→1 with N=C2×S3×Q8 and Q=C2

Direct product G=N×Q with N=C2×S3×Q8 and Q=C2
dρLabelID
C22×S3×Q896C2^2xS3xQ8192,1517

Semidirect products G=N:Q with N=C2×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Q8)⋊1C2 = Q83D12φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):1C2192,365
(C2×S3×Q8)⋊2C2 = D68SD16φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):2C2192,729
(C2×S3×Q8)⋊3C2 = Q8×D12φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):3C2192,1134
(C2×S3×Q8)⋊4C2 = Q86D12φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):4C2192,1135
(C2×S3×Q8)⋊5C2 = S3×C22⋊Q8φ: C2/C1C2 ⊆ Out C2×S3×Q848(C2xS3xQ8):5C2192,1185
(C2×S3×Q8)⋊6C2 = C6.162- 1+4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):6C2192,1187
(C2×S3×Q8)⋊7C2 = Dic621D4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):7C2192,1191
(C2×S3×Q8)⋊8C2 = Dic622D4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):8C2192,1192
(C2×S3×Q8)⋊9C2 = S3×C4.4D4φ: C2/C1C2 ⊆ Out C2×S3×Q848(C2xS3xQ8):9C2192,1232
(C2×S3×Q8)⋊10C2 = C42.141D6φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):10C2192,1234
(C2×S3×Q8)⋊11C2 = Dic610D4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):11C2192,1236
(C2×S3×Q8)⋊12C2 = C42.171D6φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):12C2192,1283
(C2×S3×Q8)⋊13C2 = D128Q8φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):13C2192,1286
(C2×S3×Q8)⋊14C2 = C2×S3×SD16φ: C2/C1C2 ⊆ Out C2×S3×Q848(C2xS3xQ8):14C2192,1317
(C2×S3×Q8)⋊15C2 = C2×D4.D6φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):15C2192,1319
(C2×S3×Q8)⋊16C2 = C2×Q16⋊S3φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):16C2192,1323
(C2×S3×Q8)⋊17C2 = S3×C8.C22φ: C2/C1C2 ⊆ Out C2×S3×Q8488-(C2xS3xQ8):17C2192,1335
(C2×S3×Q8)⋊18C2 = Q8×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):18C2192,1374
(C2×S3×Q8)⋊19C2 = C6.1072- 1+4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):19C2192,1390
(C2×S3×Q8)⋊20C2 = C2×Q8.15D6φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):20C2192,1519
(C2×S3×Q8)⋊21C2 = C2×Q8○D12φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8):21C2192,1522
(C2×S3×Q8)⋊22C2 = S3×2- 1+4φ: C2/C1C2 ⊆ Out C2×S3×Q8488-(C2xS3xQ8):22C2192,1526
(C2×S3×Q8)⋊23C2 = C2×S3×C4○D4φ: trivial image48(C2xS3xQ8):23C2192,1520

Non-split extensions G=N.Q with N=C2×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Q8).1C2 = S3×C4.10D4φ: C2/C1C2 ⊆ Out C2×S3×Q8488-(C2xS3xQ8).1C2192,309
(C2×S3×Q8).2C2 = S3×Q8⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).2C2192,360
(C2×S3×Q8).3C2 = (S3×Q8)⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).3C2192,361
(C2×S3×Q8).4C2 = D6⋊Q16φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).4C2192,368
(C2×S3×Q8).5C2 = D65Q16φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).5C2192,745
(C2×S3×Q8).6C2 = C42.125D6φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).6C2192,1131
(C2×S3×Q8).7C2 = S3×C4⋊Q8φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).7C2192,1282
(C2×S3×Q8).8C2 = C2×S3×Q16φ: C2/C1C2 ⊆ Out C2×S3×Q896(C2xS3xQ8).8C2192,1322
(C2×S3×Q8).9C2 = C4×S3×Q8φ: trivial image96(C2xS3xQ8).9C2192,1130

׿
×
𝔽