Copied to
clipboard

G = D12:8Q8order 192 = 26·3

6th semidirect product of D12 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:8Q8, Dic6:12D4, C42.173D6, C6.362- 1+4, C3:4(D4xQ8), C4:1(S3xQ8), C4:Q8:11S3, D6:7(C2xQ8), C12:3(C2xQ8), C12:Q8:44C2, C4.74(S3xD4), C4:C4.218D6, C12.72(C2xD4), D6:Q8:48C2, D6:3Q8:36C2, (C4xDic6):52C2, (C4xD12).26C2, (C2xQ8).170D6, C6.47(C22xQ8), (C2xC6).271C24, Dic3.30(C2xD4), C6.101(C22xD4), Dic3:5D4.13C2, (C2xC12).104C23, (C4xC12).212C22, D6:C4.152C22, (C6xQ8).138C22, (C2xD12).272C22, C4:Dic3.385C22, C22.292(S3xC23), Dic3:C4.166C22, (C22xS3).232C23, C2.37(Q8.15D6), (C2xDic6).189C22, (C2xDic3).142C23, (C4xDic3).160C22, (C2xS3xQ8):13C2, C2.74(C2xS3xD4), C2.30(C2xS3xQ8), (C3xC4:Q8):13C2, (S3xC2xC4).145C22, (C3xC4:C4).214C22, (C2xC4).218(C22xS3), SmallGroup(192,1286)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:8Q8
C1C3C6C2xC6C22xS3S3xC2xC4C2xS3xQ8 — D12:8Q8
C3C2xC6 — D12:8Q8
C1C22C4:Q8

Generators and relations for D12:8Q8
 G = < a,b,c,d | a12=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a6b, dcd-1=c-1 >

Subgroups: 672 in 280 conjugacy classes, 115 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, Dic6, Dic6, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C4xD4, C4xQ8, C22:Q8, C4:Q8, C4:Q8, C22xQ8, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, C2xDic6, C2xDic6, S3xC2xC4, C2xD12, S3xQ8, C6xQ8, D4xQ8, C4xDic6, C4xD12, C12:Q8, Dic3:5D4, D6:Q8, D6:3Q8, C3xC4:Q8, C2xS3xQ8, D12:8Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C24, C22xS3, C22xD4, C22xQ8, 2- 1+4, S3xD4, S3xQ8, S3xC23, D4xQ8, C2xS3xD4, C2xS3xQ8, Q8.15D6, D12:8Q8

Smallest permutation representation of D12:8Q8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 17)(14 16)(18 24)(19 23)(20 22)(25 35)(26 34)(27 33)(28 32)(29 31)(37 47)(38 46)(39 45)(40 44)(41 43)(49 59)(50 58)(51 57)(52 56)(53 55)(61 67)(62 66)(63 65)(68 72)(69 71)(73 81)(74 80)(75 79)(76 78)(82 84)(85 87)(88 96)(89 95)(90 94)(91 93)
(1 82 59 14)(2 83 60 15)(3 84 49 16)(4 73 50 17)(5 74 51 18)(6 75 52 19)(7 76 53 20)(8 77 54 21)(9 78 55 22)(10 79 56 23)(11 80 57 24)(12 81 58 13)(25 93 71 43)(26 94 72 44)(27 95 61 45)(28 96 62 46)(29 85 63 47)(30 86 64 48)(31 87 65 37)(32 88 66 38)(33 89 67 39)(34 90 68 40)(35 91 69 41)(36 92 70 42)
(1 72 59 26)(2 67 60 33)(3 62 49 28)(4 69 50 35)(5 64 51 30)(6 71 52 25)(7 66 53 32)(8 61 54 27)(9 68 55 34)(10 63 56 29)(11 70 57 36)(12 65 58 31)(13 37 81 87)(14 44 82 94)(15 39 83 89)(16 46 84 96)(17 41 73 91)(18 48 74 86)(19 43 75 93)(20 38 76 88)(21 45 77 95)(22 40 78 90)(23 47 79 85)(24 42 80 92)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,35)(26,34)(27,33)(28,32)(29,31)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55)(61,67)(62,66)(63,65)(68,72)(69,71)(73,81)(74,80)(75,79)(76,78)(82,84)(85,87)(88,96)(89,95)(90,94)(91,93), (1,82,59,14)(2,83,60,15)(3,84,49,16)(4,73,50,17)(5,74,51,18)(6,75,52,19)(7,76,53,20)(8,77,54,21)(9,78,55,22)(10,79,56,23)(11,80,57,24)(12,81,58,13)(25,93,71,43)(26,94,72,44)(27,95,61,45)(28,96,62,46)(29,85,63,47)(30,86,64,48)(31,87,65,37)(32,88,66,38)(33,89,67,39)(34,90,68,40)(35,91,69,41)(36,92,70,42), (1,72,59,26)(2,67,60,33)(3,62,49,28)(4,69,50,35)(5,64,51,30)(6,71,52,25)(7,66,53,32)(8,61,54,27)(9,68,55,34)(10,63,56,29)(11,70,57,36)(12,65,58,31)(13,37,81,87)(14,44,82,94)(15,39,83,89)(16,46,84,96)(17,41,73,91)(18,48,74,86)(19,43,75,93)(20,38,76,88)(21,45,77,95)(22,40,78,90)(23,47,79,85)(24,42,80,92)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,35)(26,34)(27,33)(28,32)(29,31)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55)(61,67)(62,66)(63,65)(68,72)(69,71)(73,81)(74,80)(75,79)(76,78)(82,84)(85,87)(88,96)(89,95)(90,94)(91,93), (1,82,59,14)(2,83,60,15)(3,84,49,16)(4,73,50,17)(5,74,51,18)(6,75,52,19)(7,76,53,20)(8,77,54,21)(9,78,55,22)(10,79,56,23)(11,80,57,24)(12,81,58,13)(25,93,71,43)(26,94,72,44)(27,95,61,45)(28,96,62,46)(29,85,63,47)(30,86,64,48)(31,87,65,37)(32,88,66,38)(33,89,67,39)(34,90,68,40)(35,91,69,41)(36,92,70,42), (1,72,59,26)(2,67,60,33)(3,62,49,28)(4,69,50,35)(5,64,51,30)(6,71,52,25)(7,66,53,32)(8,61,54,27)(9,68,55,34)(10,63,56,29)(11,70,57,36)(12,65,58,31)(13,37,81,87)(14,44,82,94)(15,39,83,89)(16,46,84,96)(17,41,73,91)(18,48,74,86)(19,43,75,93)(20,38,76,88)(21,45,77,95)(22,40,78,90)(23,47,79,85)(24,42,80,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,17),(14,16),(18,24),(19,23),(20,22),(25,35),(26,34),(27,33),(28,32),(29,31),(37,47),(38,46),(39,45),(40,44),(41,43),(49,59),(50,58),(51,57),(52,56),(53,55),(61,67),(62,66),(63,65),(68,72),(69,71),(73,81),(74,80),(75,79),(76,78),(82,84),(85,87),(88,96),(89,95),(90,94),(91,93)], [(1,82,59,14),(2,83,60,15),(3,84,49,16),(4,73,50,17),(5,74,51,18),(6,75,52,19),(7,76,53,20),(8,77,54,21),(9,78,55,22),(10,79,56,23),(11,80,57,24),(12,81,58,13),(25,93,71,43),(26,94,72,44),(27,95,61,45),(28,96,62,46),(29,85,63,47),(30,86,64,48),(31,87,65,37),(32,88,66,38),(33,89,67,39),(34,90,68,40),(35,91,69,41),(36,92,70,42)], [(1,72,59,26),(2,67,60,33),(3,62,49,28),(4,69,50,35),(5,64,51,30),(6,71,52,25),(7,66,53,32),(8,61,54,27),(9,68,55,34),(10,63,56,29),(11,70,57,36),(12,65,58,31),(13,37,81,87),(14,44,82,94),(15,39,83,89),(16,46,84,96),(17,41,73,91),(18,48,74,86),(19,43,75,93),(20,38,76,88),(21,45,77,95),(22,40,78,90),(23,47,79,85),(24,42,80,92)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q6A6B6C12A···12F12G12H12I12J
order12222222344444···44444444466612···1212121212
size11116666222224···46666121212122224···48888

39 irreducible representations

dim1111111112222224444
type+++++++++++-+++-+-
imageC1C2C2C2C2C2C2C2C2S3D4Q8D6D6D62- 1+4S3xD4S3xQ8Q8.15D6
kernelD12:8Q8C4xDic6C4xD12C12:Q8Dic3:5D4D6:Q8D6:3Q8C3xC4:Q8C2xS3xQ8C4:Q8Dic6D12C42C4:C4C2xQ8C6C4C4C2
# reps1112242121441421222

Matrix representation of D12:8Q8 in GL6(F13)

100000
010000
0001200
001000
000001
0000121
,
100000
010000
001000
0001200
0000112
0000012
,
800000
050000
001000
000100
0000120
0000012
,
010000
1200000
0001200
0012000
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,12,12],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D12:8Q8 in GAP, Magma, Sage, TeX

D_{12}\rtimes_8Q_8
% in TeX

G:=Group("D12:8Q8");
// GroupNames label

G:=SmallGroup(192,1286);
// by ID

G=gap.SmallGroup(192,1286);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,100,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<