Copied to
clipboard

G = Q83D12order 192 = 26·3

1st semidirect product of Q8 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q83D12, D67SD16, Dic64D4, (C3×Q8)⋊1D4, D6⋊C813C2, C4⋊C4.23D6, C4.5(C2×D12), C4.92(S3×D4), C32(Q8⋊D4), (C2×C8).123D6, Q8⋊C411S3, C6.23C22≀C2, C12⋊D4.1C2, C12.120(C2×D4), (C2×Q8).131D6, C6.31(C2×SD16), C2.17(S3×SD16), C6.SD1611C2, (C2×Dic3).30D4, (C22×S3).77D4, C22.196(S3×D4), (C6×Q8).29C22, C2.26(D6⋊D4), (C2×C24).134C22, (C2×C12).246C23, C2.14(Q16⋊S3), (C2×D12).62C22, C6.60(C8.C22), (C2×Dic6).70C22, (C2×S3×Q8)⋊1C2, (C2×C24⋊C2)⋊17C2, (C2×Q82S3)⋊2C2, (C2×C6).259(C2×D4), (C2×C3⋊C8).38C22, (S3×C2×C4).20C22, (C3×Q8⋊C4)⋊11C2, (C3×C4⋊C4).47C22, (C2×C4).353(C22×S3), SmallGroup(192,365)

Series: Derived Chief Lower central Upper central

C1C2×C12 — Q83D12
C1C3C6C2×C6C2×C12S3×C2×C4C2×S3×Q8 — Q83D12
C3C6C2×C12 — Q83D12
C1C22C2×C4Q8⋊C4

Generators and relations for Q83D12
 G = < a,b,c,d | a4=c12=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=dbd=ab, dcd=c-1 >

Subgroups: 520 in 158 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C22×S3, C22⋊C8, Q8⋊C4, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, C24⋊C2, C2×C3⋊C8, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, S3×Q8, C6×Q8, Q8⋊D4, C6.SD16, D6⋊C8, C3×Q8⋊C4, C12⋊D4, C2×C24⋊C2, C2×Q82S3, C2×S3×Q8, Q83D12
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, D12, C22×S3, C22≀C2, C2×SD16, C8.C22, C2×D12, S3×D4, Q8⋊D4, D6⋊D4, S3×SD16, Q16⋊S3, Q83D12

Smallest permutation representation of Q83D12
On 96 points
Generators in S96
(1 57 37 23)(2 24 38 58)(3 59 39 13)(4 14 40 60)(5 49 41 15)(6 16 42 50)(7 51 43 17)(8 18 44 52)(9 53 45 19)(10 20 46 54)(11 55 47 21)(12 22 48 56)(25 86 83 72)(26 61 84 87)(27 88 73 62)(28 63 74 89)(29 90 75 64)(30 65 76 91)(31 92 77 66)(32 67 78 93)(33 94 79 68)(34 69 80 95)(35 96 81 70)(36 71 82 85)
(1 86 37 72)(2 26 38 84)(3 88 39 62)(4 28 40 74)(5 90 41 64)(6 30 42 76)(7 92 43 66)(8 32 44 78)(9 94 45 68)(10 34 46 80)(11 96 47 70)(12 36 48 82)(13 73 59 27)(14 89 60 63)(15 75 49 29)(16 91 50 65)(17 77 51 31)(18 93 52 67)(19 79 53 33)(20 95 54 69)(21 81 55 35)(22 85 56 71)(23 83 57 25)(24 87 58 61)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 60)(23 59)(24 58)(25 88)(26 87)(27 86)(28 85)(29 96)(30 95)(31 94)(32 93)(33 92)(34 91)(35 90)(36 89)(37 39)(40 48)(41 47)(42 46)(43 45)(61 84)(62 83)(63 82)(64 81)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)

G:=sub<Sym(96)| (1,57,37,23)(2,24,38,58)(3,59,39,13)(4,14,40,60)(5,49,41,15)(6,16,42,50)(7,51,43,17)(8,18,44,52)(9,53,45,19)(10,20,46,54)(11,55,47,21)(12,22,48,56)(25,86,83,72)(26,61,84,87)(27,88,73,62)(28,63,74,89)(29,90,75,64)(30,65,76,91)(31,92,77,66)(32,67,78,93)(33,94,79,68)(34,69,80,95)(35,96,81,70)(36,71,82,85), (1,86,37,72)(2,26,38,84)(3,88,39,62)(4,28,40,74)(5,90,41,64)(6,30,42,76)(7,92,43,66)(8,32,44,78)(9,94,45,68)(10,34,46,80)(11,96,47,70)(12,36,48,82)(13,73,59,27)(14,89,60,63)(15,75,49,29)(16,91,50,65)(17,77,51,31)(18,93,52,67)(19,79,53,33)(20,95,54,69)(21,81,55,35)(22,85,56,71)(23,83,57,25)(24,87,58,61), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,39)(40,48)(41,47)(42,46)(43,45)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)>;

G:=Group( (1,57,37,23)(2,24,38,58)(3,59,39,13)(4,14,40,60)(5,49,41,15)(6,16,42,50)(7,51,43,17)(8,18,44,52)(9,53,45,19)(10,20,46,54)(11,55,47,21)(12,22,48,56)(25,86,83,72)(26,61,84,87)(27,88,73,62)(28,63,74,89)(29,90,75,64)(30,65,76,91)(31,92,77,66)(32,67,78,93)(33,94,79,68)(34,69,80,95)(35,96,81,70)(36,71,82,85), (1,86,37,72)(2,26,38,84)(3,88,39,62)(4,28,40,74)(5,90,41,64)(6,30,42,76)(7,92,43,66)(8,32,44,78)(9,94,45,68)(10,34,46,80)(11,96,47,70)(12,36,48,82)(13,73,59,27)(14,89,60,63)(15,75,49,29)(16,91,50,65)(17,77,51,31)(18,93,52,67)(19,79,53,33)(20,95,54,69)(21,81,55,35)(22,85,56,71)(23,83,57,25)(24,87,58,61), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,39)(40,48)(41,47)(42,46)(43,45)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73) );

G=PermutationGroup([[(1,57,37,23),(2,24,38,58),(3,59,39,13),(4,14,40,60),(5,49,41,15),(6,16,42,50),(7,51,43,17),(8,18,44,52),(9,53,45,19),(10,20,46,54),(11,55,47,21),(12,22,48,56),(25,86,83,72),(26,61,84,87),(27,88,73,62),(28,63,74,89),(29,90,75,64),(30,65,76,91),(31,92,77,66),(32,67,78,93),(33,94,79,68),(34,69,80,95),(35,96,81,70),(36,71,82,85)], [(1,86,37,72),(2,26,38,84),(3,88,39,62),(4,28,40,74),(5,90,41,64),(6,30,42,76),(7,92,43,66),(8,32,44,78),(9,94,45,68),(10,34,46,80),(11,96,47,70),(12,36,48,82),(13,73,59,27),(14,89,60,63),(15,75,49,29),(16,91,50,65),(17,77,51,31),(18,93,52,67),(19,79,53,33),(20,95,54,69),(21,81,55,35),(22,85,56,71),(23,83,57,25),(24,87,58,61)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,60),(23,59),(24,58),(25,88),(26,87),(27,86),(28,85),(29,96),(30,95),(31,94),(32,93),(33,92),(34,91),(35,90),(36,89),(37,39),(40,48),(41,47),(42,46),(43,45),(61,84),(62,83),(63,82),(64,81),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111166242224481212122224412124488884444

33 irreducible representations

dim11111111222222222244444
type+++++++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6SD16D12C8.C22S3×D4S3×D4S3×SD16Q16⋊S3
kernelQ83D12C6.SD16D6⋊C8C3×Q8⋊C4C12⋊D4C2×C24⋊C2C2×Q82S3C2×S3×Q8Q8⋊C4Dic6C2×Dic3C3×Q8C22×S3C4⋊C4C2×C8C2×Q8D6Q8C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of Q83D12 in GL6(𝔽73)

0720000
100000
001000
000100
0000720
0000072
,
660000
6670000
001000
000100
00007271
000001
,
7200000
010000
000100
0072100
00007271
000011
,
100000
0720000
0017200
0007200
0000720
000011

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[6,6,0,0,0,0,6,67,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,71,1],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,72,1,0,0,0,0,71,1],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1] >;

Q83D12 in GAP, Magma, Sage, TeX

Q_8\rtimes_3D_{12}
% in TeX

G:=Group("Q8:3D12");
// GroupNames label

G:=SmallGroup(192,365);
// by ID

G=gap.SmallGroup(192,365);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^12=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽