Extensions 1→N→G→Q→1 with N=C2×Q83S3 and Q=C2

Direct product G=N×Q with N=C2×Q83S3 and Q=C2
dρLabelID
C22×Q83S396C2^2xQ8:3S3192,1518

Semidirect products G=N:Q with N=C2×Q83S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q83S3)⋊1C2 = Q84D12φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):1C2192,369
(C2×Q83S3)⋊2C2 = D127D4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):2C2192,731
(C2×Q83S3)⋊3C2 = Q86D12φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):3C2192,1135
(C2×Q83S3)⋊4C2 = Q87D12φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):4C2192,1136
(C2×Q83S3)⋊5C2 = C4⋊C426D6φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):5C2192,1186
(C2×Q83S3)⋊6C2 = C6.172- 1+4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):6C2192,1188
(C2×Q83S3)⋊7C2 = D1221D4φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):7C2192,1189
(C2×Q83S3)⋊8C2 = D1222D4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):8C2192,1190
(C2×Q83S3)⋊9C2 = C42.233D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):9C2192,1227
(C2×Q83S3)⋊10C2 = C4220D6φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):10C2192,1233
(C2×Q83S3)⋊11C2 = D1210D4φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):11C2192,1235
(C2×Q83S3)⋊12C2 = C42.240D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):12C2192,1284
(C2×Q83S3)⋊13C2 = D1212D4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):13C2192,1285
(C2×Q83S3)⋊14C2 = C2×Q83D6φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):14C2192,1318
(C2×Q83S3)⋊15C2 = C2×Q8.7D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):15C2192,1320
(C2×Q83S3)⋊16C2 = C2×D24⋊C2φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):16C2192,1324
(C2×Q83S3)⋊17C2 = D24⋊C22φ: C2/C1C2 ⊆ Out C2×Q83S3488+(C2xQ8:3S3):17C2192,1336
(C2×Q83S3)⋊18C2 = C6.452- 1+4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):18C2192,1376
(C2×Q83S3)⋊19C2 = C6.1482+ 1+4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):19C2192,1393
(C2×Q83S3)⋊20C2 = C2×Q8.15D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3):20C2192,1519
(C2×Q83S3)⋊21C2 = C2×D4○D12φ: C2/C1C2 ⊆ Out C2×Q83S348(C2xQ8:3S3):21C2192,1521
(C2×Q83S3)⋊22C2 = D12.39C23φ: C2/C1C2 ⊆ Out C2×Q83S3488+(C2xQ8:3S3):22C2192,1527
(C2×Q83S3)⋊23C2 = C2×S3×C4○D4φ: trivial image48(C2xQ8:3S3):23C2192,1520

Non-split extensions G=N.Q with N=C2×Q83S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q83S3).1C2 = M4(2).21D6φ: C2/C1C2 ⊆ Out C2×Q83S3488+(C2xQ8:3S3).1C2192,310
(C2×Q83S3).2C2 = Q87(C4×S3)φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).2C2192,362
(C2×Q83S3).3C2 = C4⋊C4.150D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).3C2192,363
(C2×Q83S3).4C2 = Q8.11D12φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).4C2192,367
(C2×Q83S3).5C2 = D12.17D4φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).5C2192,746
(C2×Q83S3).6C2 = C42.126D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).6C2192,1133
(C2×Q83S3).7C2 = C42.171D6φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).7C2192,1283
(C2×Q83S3).8C2 = C2×Q16⋊S3φ: C2/C1C2 ⊆ Out C2×Q83S396(C2xQ8:3S3).8C2192,1323
(C2×Q83S3).9C2 = C4×Q83S3φ: trivial image96(C2xQ8:3S3).9C2192,1132

׿
×
𝔽