Copied to
clipboard

G = Q8.11D12order 192 = 26·3

1st non-split extension by Q8 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.10D4, Q8.11D12, D6⋊C814C2, C4⋊C4.25D6, C4.93(S3×D4), C4.6(C2×D12), (C3×Q8).1D4, C4.D125C2, (C2×C8).124D6, Q8⋊C412S3, C6.24C22≀C2, C6.48(C4○D8), C12.122(C2×D4), C6.D811C2, C33(D4.7D4), (C2×Q8).132D6, (C22×S3).17D4, C22.198(S3×D4), (C6×Q8).31C22, C2.27(D6⋊D4), (C2×C24).135C22, (C2×C12).248C23, (C2×Dic3).154D4, C2.15(Q16⋊S3), (C2×D12).64C22, C6.61(C8.C22), C2.17(Q8.7D6), (C2×Dic6).71C22, (C2×C3⋊Q16)⋊3C2, (C2×C24⋊C2)⋊18C2, (C2×C6).261(C2×D4), (C2×C3⋊C8).39C22, (S3×C2×C4).21C22, (C3×Q8⋊C4)⋊12C2, (C3×C4⋊C4).49C22, (C2×Q83S3).4C2, (C2×C4).355(C22×S3), SmallGroup(192,367)

Series: Derived Chief Lower central Upper central

C1C2×C12 — Q8.11D12
C1C3C6C12C2×C12S3×C2×C4C4.D12 — Q8.11D12
C3C6C2×C12 — Q8.11D12
C1C22C2×C4Q8⋊C4

Generators and relations for Q8.11D12
 G = < a,b,c,d | a4=c12=1, b2=d2=a2, bab-1=cac-1=dad-1=a-1, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 488 in 152 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C22×S3, C22⋊C8, D4⋊C4, Q8⋊C4, C22⋊Q8, C2×SD16, C2×Q16, C2×C4○D4, C24⋊C2, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3⋊Q16, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, Q83S3, C6×Q8, D4.7D4, C6.D8, D6⋊C8, C3×Q8⋊C4, C4.D12, C2×C24⋊C2, C2×C3⋊Q16, C2×Q83S3, Q8.11D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C4○D8, C8.C22, C2×D12, S3×D4, D4.7D4, D6⋊D4, Q8.7D6, Q16⋊S3, Q8.11D12

Smallest permutation representation of Q8.11D12
On 96 points
Generators in S96
(1 90 17 49)(2 50 18 91)(3 92 19 51)(4 52 20 93)(5 94 21 53)(6 54 22 95)(7 96 23 55)(8 56 24 85)(9 86 13 57)(10 58 14 87)(11 88 15 59)(12 60 16 89)(25 40 61 77)(26 78 62 41)(27 42 63 79)(28 80 64 43)(29 44 65 81)(30 82 66 45)(31 46 67 83)(32 84 68 47)(33 48 69 73)(34 74 70 37)(35 38 71 75)(36 76 72 39)
(1 39 17 76)(2 25 18 61)(3 41 19 78)(4 27 20 63)(5 43 21 80)(6 29 22 65)(7 45 23 82)(8 31 24 67)(9 47 13 84)(10 33 14 69)(11 37 15 74)(12 35 16 71)(26 92 62 51)(28 94 64 53)(30 96 66 55)(32 86 68 57)(34 88 70 59)(36 90 72 49)(38 60 75 89)(40 50 77 91)(42 52 79 93)(44 54 81 95)(46 56 83 85)(48 58 73 87)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 81 17 44)(2 43 18 80)(3 79 19 42)(4 41 20 78)(5 77 21 40)(6 39 22 76)(7 75 23 38)(8 37 24 74)(9 73 13 48)(10 47 14 84)(11 83 15 46)(12 45 16 82)(25 94 61 53)(26 52 62 93)(27 92 63 51)(28 50 64 91)(29 90 65 49)(30 60 66 89)(31 88 67 59)(32 58 68 87)(33 86 69 57)(34 56 70 85)(35 96 71 55)(36 54 72 95)

G:=sub<Sym(96)| (1,90,17,49)(2,50,18,91)(3,92,19,51)(4,52,20,93)(5,94,21,53)(6,54,22,95)(7,96,23,55)(8,56,24,85)(9,86,13,57)(10,58,14,87)(11,88,15,59)(12,60,16,89)(25,40,61,77)(26,78,62,41)(27,42,63,79)(28,80,64,43)(29,44,65,81)(30,82,66,45)(31,46,67,83)(32,84,68,47)(33,48,69,73)(34,74,70,37)(35,38,71,75)(36,76,72,39), (1,39,17,76)(2,25,18,61)(3,41,19,78)(4,27,20,63)(5,43,21,80)(6,29,22,65)(7,45,23,82)(8,31,24,67)(9,47,13,84)(10,33,14,69)(11,37,15,74)(12,35,16,71)(26,92,62,51)(28,94,64,53)(30,96,66,55)(32,86,68,57)(34,88,70,59)(36,90,72,49)(38,60,75,89)(40,50,77,91)(42,52,79,93)(44,54,81,95)(46,56,83,85)(48,58,73,87), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,81,17,44)(2,43,18,80)(3,79,19,42)(4,41,20,78)(5,77,21,40)(6,39,22,76)(7,75,23,38)(8,37,24,74)(9,73,13,48)(10,47,14,84)(11,83,15,46)(12,45,16,82)(25,94,61,53)(26,52,62,93)(27,92,63,51)(28,50,64,91)(29,90,65,49)(30,60,66,89)(31,88,67,59)(32,58,68,87)(33,86,69,57)(34,56,70,85)(35,96,71,55)(36,54,72,95)>;

G:=Group( (1,90,17,49)(2,50,18,91)(3,92,19,51)(4,52,20,93)(5,94,21,53)(6,54,22,95)(7,96,23,55)(8,56,24,85)(9,86,13,57)(10,58,14,87)(11,88,15,59)(12,60,16,89)(25,40,61,77)(26,78,62,41)(27,42,63,79)(28,80,64,43)(29,44,65,81)(30,82,66,45)(31,46,67,83)(32,84,68,47)(33,48,69,73)(34,74,70,37)(35,38,71,75)(36,76,72,39), (1,39,17,76)(2,25,18,61)(3,41,19,78)(4,27,20,63)(5,43,21,80)(6,29,22,65)(7,45,23,82)(8,31,24,67)(9,47,13,84)(10,33,14,69)(11,37,15,74)(12,35,16,71)(26,92,62,51)(28,94,64,53)(30,96,66,55)(32,86,68,57)(34,88,70,59)(36,90,72,49)(38,60,75,89)(40,50,77,91)(42,52,79,93)(44,54,81,95)(46,56,83,85)(48,58,73,87), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,81,17,44)(2,43,18,80)(3,79,19,42)(4,41,20,78)(5,77,21,40)(6,39,22,76)(7,75,23,38)(8,37,24,74)(9,73,13,48)(10,47,14,84)(11,83,15,46)(12,45,16,82)(25,94,61,53)(26,52,62,93)(27,92,63,51)(28,50,64,91)(29,90,65,49)(30,60,66,89)(31,88,67,59)(32,58,68,87)(33,86,69,57)(34,56,70,85)(35,96,71,55)(36,54,72,95) );

G=PermutationGroup([[(1,90,17,49),(2,50,18,91),(3,92,19,51),(4,52,20,93),(5,94,21,53),(6,54,22,95),(7,96,23,55),(8,56,24,85),(9,86,13,57),(10,58,14,87),(11,88,15,59),(12,60,16,89),(25,40,61,77),(26,78,62,41),(27,42,63,79),(28,80,64,43),(29,44,65,81),(30,82,66,45),(31,46,67,83),(32,84,68,47),(33,48,69,73),(34,74,70,37),(35,38,71,75),(36,76,72,39)], [(1,39,17,76),(2,25,18,61),(3,41,19,78),(4,27,20,63),(5,43,21,80),(6,29,22,65),(7,45,23,82),(8,31,24,67),(9,47,13,84),(10,33,14,69),(11,37,15,74),(12,35,16,71),(26,92,62,51),(28,94,64,53),(30,96,66,55),(32,86,68,57),(34,88,70,59),(36,90,72,49),(38,60,75,89),(40,50,77,91),(42,52,79,93),(44,54,81,95),(46,56,83,85),(48,58,73,87)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,81,17,44),(2,43,18,80),(3,79,19,42),(4,41,20,78),(5,77,21,40),(6,39,22,76),(7,75,23,38),(8,37,24,74),(9,73,13,48),(10,47,14,84),(11,83,15,46),(12,45,16,82),(25,94,61,53),(26,52,62,93),(27,92,63,51),(28,50,64,91),(29,90,65,49),(30,60,66,89),(31,88,67,59),(32,58,68,87),(33,86,69,57),(34,56,70,85),(35,96,71,55),(36,54,72,95)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111112121222244668242224412124488884444

33 irreducible representations

dim11111111222222222244444
type+++++++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6D12C4○D8C8.C22S3×D4S3×D4Q8.7D6Q16⋊S3
kernelQ8.11D12C6.D8D6⋊C8C3×Q8⋊C4C4.D12C2×C24⋊C2C2×C3⋊Q16C2×Q83S3Q8⋊C4D12C2×Dic3C3×Q8C22×S3C4⋊C4C2×C8C2×Q8Q8C6C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of Q8.11D12 in GL4(𝔽73) generated by

1000
0100
00171
00172
,
72000
07200
004654
00027
,
66700
665900
004132
005732
,
66700
14700
00012
0060
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,1,0,0,71,72],[72,0,0,0,0,72,0,0,0,0,46,0,0,0,54,27],[66,66,0,0,7,59,0,0,0,0,41,57,0,0,32,32],[66,14,0,0,7,7,0,0,0,0,0,6,0,0,12,0] >;

Q8.11D12 in GAP, Magma, Sage, TeX

Q_8._{11}D_{12}
% in TeX

G:=Group("Q8.11D12");
// GroupNames label

G:=SmallGroup(192,367);
// by ID

G=gap.SmallGroup(192,367);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,758,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^12=1,b^2=d^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽