Extensions 1→N→G→Q→1 with N=C6 and Q=D16

Direct product G=N×Q with N=C6 and Q=D16
dρLabelID
C6×D1696C6xD16192,938

Semidirect products G=N:Q with N=C6 and Q=D16
extensionφ:Q→Aut NdρLabelID
C61D16 = C2×D48φ: D16/C16C2 ⊆ Aut C696C6:1D16192,461
C62D16 = C2×C3⋊D16φ: D16/D8C2 ⊆ Aut C696C6:2D16192,705

Non-split extensions G=N.Q with N=C6 and Q=D16
extensionφ:Q→Aut NdρLabelID
C6.1D16 = D96φ: D16/C16C2 ⊆ Aut C6962+C6.1D16192,7
C6.2D16 = C32⋊S3φ: D16/C16C2 ⊆ Aut C6962C6.2D16192,8
C6.3D16 = Dic48φ: D16/C16C2 ⊆ Aut C61922-C6.3D16192,9
C6.4D16 = C485C4φ: D16/C16C2 ⊆ Aut C6192C6.4D16192,63
C6.5D16 = C2.D48φ: D16/C16C2 ⊆ Aut C696C6.5D16192,68
C6.6D16 = C6.6D16φ: D16/D8C2 ⊆ Aut C6192C6.6D16192,48
C6.7D16 = C6.D16φ: D16/D8C2 ⊆ Aut C696C6.7D16192,50
C6.8D16 = C3⋊D32φ: D16/D8C2 ⊆ Aut C6964+C6.8D16192,78
C6.9D16 = D16.S3φ: D16/D8C2 ⊆ Aut C6964-C6.9D16192,79
C6.10D16 = C3⋊SD64φ: D16/D8C2 ⊆ Aut C6964+C6.10D16192,80
C6.11D16 = C3⋊Q64φ: D16/D8C2 ⊆ Aut C61924-C6.11D16192,81
C6.12D16 = D81Dic3φ: D16/D8C2 ⊆ Aut C696C6.12D16192,121
C6.13D16 = C3×C2.D16central extension (φ=1)96C6.13D16192,163
C6.14D16 = C3×C163C4central extension (φ=1)192C6.14D16192,172
C6.15D16 = C3×D32central extension (φ=1)962C6.15D16192,177
C6.16D16 = C3×SD64central extension (φ=1)962C6.16D16192,178
C6.17D16 = C3×Q64central extension (φ=1)1922C6.17D16192,179

׿
×
𝔽