Copied to
clipboard

G = C3⋊D32order 192 = 26·3

The semidirect product of C3 and D32 acting via D32/D16=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C32D32, D483C2, D161S3, C12.5D8, C6.8D16, C24.9D4, C16.4D6, C48.2C22, C3⋊C321C2, (C3×D16)⋊1C2, C4.1(D4⋊S3), C8.9(C3⋊D4), C2.4(C3⋊D16), SmallGroup(192,78)

Series: Derived Chief Lower central Upper central

C1C48 — C3⋊D32
C1C3C6C12C24C48D48 — C3⋊D32
C3C6C12C24C48 — C3⋊D32
C1C2C4C8C16D16

Generators and relations for C3⋊D32
 G = < a,b,c | a3=b32=c2=1, bab-1=cac=a-1, cbc=b-1 >

16C2
48C2
8C22
24C22
16S3
16C6
4D4
12D4
8D6
8C2×C6
2D8
6D8
4D12
4C3×D4
3C32
3D16
2D24
2C3×D8
3D32

Character table of C3⋊D32

 class 12A2B2C346A6B6C8A8B1216A16B16C16D24A24B32A32B32C32D32E32F32G32H48A48B48C48D
 size 1116482221616224222244666666664444
ρ1111111111111111111111111111111    trivial
ρ2111-111111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311-11111-1-1111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ411-1-1111-1-1111111111111111111111    linear of order 2
ρ52220-12-1-1-122-12222-1-100000000-1-1-1-1    orthogonal lifted from S3
ρ6220022200222-2-2-2-22200000000-2-2-2-2    orthogonal lifted from D4
ρ722-20-12-11122-12222-1-100000000-1-1-1-1    orthogonal lifted from D6
ρ822002-220000-22-22-20016716165163ζ165163ζ165163ζ16716ζ1671616716165163-22-22    orthogonal lifted from D16
ρ922002-220000-22-22-200ζ16716ζ1651631651631651631671616716ζ16716ζ165163-22-22    orthogonal lifted from D16
ρ10220022200-2-220000-2-2-2222-2-2-220000    orthogonal lifted from D8
ρ11220022200-2-220000-2-22-2-2-2222-20000    orthogonal lifted from D8
ρ122-20020-2002-20ζ3210326323032183210326ζ323032182-2ζ3211325ζ32153232253223ζ322532233213323ζ32133233211325321532ζ32303218ζ3210326323032183210326    orthogonal lifted from D32
ρ132-20020-2002-203210326ζ32303218ζ3210326323032182-2ζ321332332253223321532ζ321532ζ321132532113253213323ζ32253223323032183210326ζ32303218ζ3210326    orthogonal lifted from D32
ρ1422002-220000-2-22-2200165163ζ167161671616716ζ165163ζ165163165163ζ167162-22-2    orthogonal lifted from D16
ρ1522002-220000-2-22-2200ζ16516316716ζ16716ζ16716165163165163ζ165163167162-22-2    orthogonal lifted from D16
ρ162-20020-2002-203210326ζ32303218ζ3210326323032182-23213323ζ32253223ζ3215323215323211325ζ3211325ζ321332332253223323032183210326ζ32303218ζ3210326    orthogonal lifted from D32
ρ172-20020-2002-20ζ3210326323032183210326ζ323032182-23211325321532ζ3225322332253223ζ32133233213323ζ3211325ζ321532ζ32303218ζ3210326323032183210326    orthogonal lifted from D32
ρ182-20020-200-220323032183210326ζ32303218ζ3210326-2232253223ζ3211325ζ32133233213323ζ321532321532ζ322532233211325ζ3210326323032183210326ζ32303218    orthogonal lifted from D32
ρ192-20020-200-220ζ32303218ζ3210326323032183210326-22ζ3215323213323ζ32113253211325ζ3225322332253223321532ζ32133233210326ζ32303218ζ321032632303218    orthogonal lifted from D32
ρ202-20020-200-220323032183210326ζ32303218ζ3210326-22ζ3225322332113253213323ζ3213323321532ζ32153232253223ζ3211325ζ3210326323032183210326ζ32303218    orthogonal lifted from D32
ρ212-20020-200-220ζ32303218ζ3210326323032183210326-22321532ζ32133233211325ζ321132532253223ζ32253223ζ32153232133233210326ζ32303218ζ321032632303218    orthogonal lifted from D32
ρ222200-12-1-3--322-1-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ232200-12-1--3-322-1-2-2-2-2-1-1000000001111    complex lifted from C3⋊D4
ρ244400-24-200-4-4-2000022000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ254400-2-4-20000222-2222-2200000000002-22-2    orthogonal lifted from C3⋊D16, Schur index 2
ρ264400-2-4-200002-2222-22220000000000-22-22    orthogonal lifted from C3⋊D16, Schur index 2
ρ274-400-2020022-220165-2ζ163-2ζ1615+2ζ169-2ζ165+2ζ1631615-2ζ169-2200000000ζ1671616516316716ζ165163    orthogonal faithful, Schur index 2
ρ284-400-20200-22220-2ζ1615+2ζ169-2ζ165+2ζ1631615-2ζ169165-2ζ1632-20000000016516316716ζ165163ζ16716    orthogonal faithful, Schur index 2
ρ294-400-2020022-220-2ζ165+2ζ1631615-2ζ169165-2ζ163-2ζ1615+2ζ169-220000000016716ζ165163ζ16716165163    orthogonal faithful, Schur index 2
ρ304-400-20200-222201615-2ζ169165-2ζ163-2ζ1615+2ζ169-2ζ165+2ζ1632-200000000ζ165163ζ1671616516316716    orthogonal faithful, Schur index 2

Smallest permutation representation of C3⋊D32
On 96 points
Generators in S96
(1 78 49)(2 50 79)(3 80 51)(4 52 81)(5 82 53)(6 54 83)(7 84 55)(8 56 85)(9 86 57)(10 58 87)(11 88 59)(12 60 89)(13 90 61)(14 62 91)(15 92 63)(16 64 93)(17 94 33)(18 34 95)(19 96 35)(20 36 65)(21 66 37)(22 38 67)(23 68 39)(24 40 69)(25 70 41)(26 42 71)(27 72 43)(28 44 73)(29 74 45)(30 46 75)(31 76 47)(32 48 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 84)(44 83)(45 82)(46 81)(47 80)(48 79)(49 78)(50 77)(51 76)(52 75)(53 74)(54 73)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 96)(64 95)

G:=sub<Sym(96)| (1,78,49)(2,50,79)(3,80,51)(4,52,81)(5,82,53)(6,54,83)(7,84,55)(8,56,85)(9,86,57)(10,58,87)(11,88,59)(12,60,89)(13,90,61)(14,62,91)(15,92,63)(16,64,93)(17,94,33)(18,34,95)(19,96,35)(20,36,65)(21,66,37)(22,38,67)(23,68,39)(24,40,69)(25,70,41)(26,42,71)(27,72,43)(28,44,73)(29,74,45)(30,46,75)(31,76,47)(32,48,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,96)(64,95)>;

G:=Group( (1,78,49)(2,50,79)(3,80,51)(4,52,81)(5,82,53)(6,54,83)(7,84,55)(8,56,85)(9,86,57)(10,58,87)(11,88,59)(12,60,89)(13,90,61)(14,62,91)(15,92,63)(16,64,93)(17,94,33)(18,34,95)(19,96,35)(20,36,65)(21,66,37)(22,38,67)(23,68,39)(24,40,69)(25,70,41)(26,42,71)(27,72,43)(28,44,73)(29,74,45)(30,46,75)(31,76,47)(32,48,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,96)(64,95) );

G=PermutationGroup([[(1,78,49),(2,50,79),(3,80,51),(4,52,81),(5,82,53),(6,54,83),(7,84,55),(8,56,85),(9,86,57),(10,58,87),(11,88,59),(12,60,89),(13,90,61),(14,62,91),(15,92,63),(16,64,93),(17,94,33),(18,34,95),(19,96,35),(20,36,65),(21,66,37),(22,38,67),(23,68,39),(24,40,69),(25,70,41),(26,42,71),(27,72,43),(28,44,73),(29,74,45),(30,46,75),(31,76,47),(32,48,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,84),(44,83),(45,82),(46,81),(47,80),(48,79),(49,78),(50,77),(51,76),(52,75),(53,74),(54,73),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,96),(64,95)]])

Matrix representation of C3⋊D32 in GL4(𝔽97) generated by

1000
0100
00961
00960
,
675900
748400
008256
004115
,
1000
949600
0001
0010
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,96,96,0,0,1,0],[67,74,0,0,59,84,0,0,0,0,82,41,0,0,56,15],[1,94,0,0,0,96,0,0,0,0,0,1,0,0,1,0] >;

C3⋊D32 in GAP, Magma, Sage, TeX

C_3\rtimes D_{32}
% in TeX

G:=Group("C3:D32");
// GroupNames label

G:=SmallGroup(192,78);
// by ID

G=gap.SmallGroup(192,78);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,254,135,142,675,346,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^3=b^32=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D32 in TeX
Character table of C3⋊D32 in TeX

׿
×
𝔽