metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3⋊2D32, D48⋊3C2, D16⋊1S3, C12.5D8, C6.8D16, C24.9D4, C16.4D6, C48.2C22, C3⋊C32⋊1C2, (C3×D16)⋊1C2, C4.1(D4⋊S3), C8.9(C3⋊D4), C2.4(C3⋊D16), SmallGroup(192,78)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D32
G = < a,b,c | a3=b32=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C3⋊D32
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 8A | 8B | 12 | 16A | 16B | 16C | 16D | 24A | 24B | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | 48A | 48B | 48C | 48D | |
size | 1 | 1 | 16 | 48 | 2 | 2 | 2 | 16 | 16 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | -2 | 0 | -1 | 2 | -1 | 1 | 1 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | √2 | -√2 | ζ3211-ζ325 | ζ3215-ζ32 | -ζ3225+ζ3223 | ζ3225-ζ3223 | -ζ3213+ζ323 | ζ3213-ζ323 | -ζ3211+ζ325 | -ζ3215+ζ32 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | orthogonal lifted from D32 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | √2 | -√2 | ζ3213-ζ323 | -ζ3225+ζ3223 | -ζ3215+ζ32 | ζ3215-ζ32 | ζ3211-ζ325 | -ζ3211+ζ325 | -ζ3213+ζ323 | ζ3225-ζ3223 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | orthogonal lifted from D32 |
ρ14 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D16 |
ρ15 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | √2 | -√2 | -ζ3213+ζ323 | ζ3225-ζ3223 | ζ3215-ζ32 | -ζ3215+ζ32 | -ζ3211+ζ325 | ζ3211-ζ325 | ζ3213-ζ323 | -ζ3225+ζ3223 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | orthogonal lifted from D32 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | √2 | -√2 | -ζ3211+ζ325 | -ζ3215+ζ32 | ζ3225-ζ3223 | -ζ3225+ζ3223 | ζ3213-ζ323 | -ζ3213+ζ323 | ζ3211-ζ325 | ζ3215-ζ32 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | orthogonal lifted from D32 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -√2 | √2 | -ζ3225+ζ3223 | ζ3211-ζ325 | ζ3213-ζ323 | -ζ3213+ζ323 | ζ3215-ζ32 | -ζ3215+ζ32 | ζ3225-ζ3223 | -ζ3211+ζ325 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | orthogonal lifted from D32 |
ρ19 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | -√2 | √2 | ζ3215-ζ32 | -ζ3213+ζ323 | ζ3211-ζ325 | -ζ3211+ζ325 | ζ3225-ζ3223 | -ζ3225+ζ3223 | -ζ3215+ζ32 | ζ3213-ζ323 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | orthogonal lifted from D32 |
ρ20 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -√2 | √2 | ζ3225-ζ3223 | -ζ3211+ζ325 | -ζ3213+ζ323 | ζ3213-ζ323 | -ζ3215+ζ32 | ζ3215-ζ32 | -ζ3225+ζ3223 | ζ3211-ζ325 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | ζ3230-ζ3218 | orthogonal lifted from D32 |
ρ21 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | -ζ3210+ζ326 | -√2 | √2 | -ζ3215+ζ32 | ζ3213-ζ323 | -ζ3211+ζ325 | ζ3211-ζ325 | -ζ3225+ζ3223 | ζ3225-ζ3223 | ζ3215-ζ32 | -ζ3213+ζ323 | -ζ3210+ζ326 | ζ3230-ζ3218 | ζ3210-ζ326 | -ζ3230+ζ3218 | orthogonal lifted from D32 |
ρ22 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | √-3 | -√-3 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ23 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -√-3 | √-3 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ24 | 4 | 4 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | -4 | -4 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ25 | 4 | 4 | 0 | 0 | -2 | -4 | -2 | 0 | 0 | 0 | 0 | 2 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from C3⋊D16, Schur index 2 |
ρ26 | 4 | 4 | 0 | 0 | -2 | -4 | -2 | 0 | 0 | 0 | 0 | 2 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from C3⋊D16, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | orthogonal faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | orthogonal faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | -2ζ165+2ζ163 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | orthogonal faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 2ζ1615-2ζ169 | 2ζ165-2ζ163 | -2ζ1615+2ζ169 | -2ζ165+2ζ163 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | orthogonal faithful, Schur index 2 |
(1 78 49)(2 50 79)(3 80 51)(4 52 81)(5 82 53)(6 54 83)(7 84 55)(8 56 85)(9 86 57)(10 58 87)(11 88 59)(12 60 89)(13 90 61)(14 62 91)(15 92 63)(16 64 93)(17 94 33)(18 34 95)(19 96 35)(20 36 65)(21 66 37)(22 38 67)(23 68 39)(24 40 69)(25 70 41)(26 42 71)(27 72 43)(28 44 73)(29 74 45)(30 46 75)(31 76 47)(32 48 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 84)(44 83)(45 82)(46 81)(47 80)(48 79)(49 78)(50 77)(51 76)(52 75)(53 74)(54 73)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 96)(64 95)
G:=sub<Sym(96)| (1,78,49)(2,50,79)(3,80,51)(4,52,81)(5,82,53)(6,54,83)(7,84,55)(8,56,85)(9,86,57)(10,58,87)(11,88,59)(12,60,89)(13,90,61)(14,62,91)(15,92,63)(16,64,93)(17,94,33)(18,34,95)(19,96,35)(20,36,65)(21,66,37)(22,38,67)(23,68,39)(24,40,69)(25,70,41)(26,42,71)(27,72,43)(28,44,73)(29,74,45)(30,46,75)(31,76,47)(32,48,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,96)(64,95)>;
G:=Group( (1,78,49)(2,50,79)(3,80,51)(4,52,81)(5,82,53)(6,54,83)(7,84,55)(8,56,85)(9,86,57)(10,58,87)(11,88,59)(12,60,89)(13,90,61)(14,62,91)(15,92,63)(16,64,93)(17,94,33)(18,34,95)(19,96,35)(20,36,65)(21,66,37)(22,38,67)(23,68,39)(24,40,69)(25,70,41)(26,42,71)(27,72,43)(28,44,73)(29,74,45)(30,46,75)(31,76,47)(32,48,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,96)(64,95) );
G=PermutationGroup([[(1,78,49),(2,50,79),(3,80,51),(4,52,81),(5,82,53),(6,54,83),(7,84,55),(8,56,85),(9,86,57),(10,58,87),(11,88,59),(12,60,89),(13,90,61),(14,62,91),(15,92,63),(16,64,93),(17,94,33),(18,34,95),(19,96,35),(20,36,65),(21,66,37),(22,38,67),(23,68,39),(24,40,69),(25,70,41),(26,42,71),(27,72,43),(28,44,73),(29,74,45),(30,46,75),(31,76,47),(32,48,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,84),(44,83),(45,82),(46,81),(47,80),(48,79),(49,78),(50,77),(51,76),(52,75),(53,74),(54,73),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,96),(64,95)]])
Matrix representation of C3⋊D32 ►in GL4(𝔽97) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 96 | 1 |
0 | 0 | 96 | 0 |
67 | 59 | 0 | 0 |
74 | 84 | 0 | 0 |
0 | 0 | 82 | 56 |
0 | 0 | 41 | 15 |
1 | 0 | 0 | 0 |
94 | 96 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,96,96,0,0,1,0],[67,74,0,0,59,84,0,0,0,0,82,41,0,0,56,15],[1,94,0,0,0,96,0,0,0,0,0,1,0,0,1,0] >;
C3⋊D32 in GAP, Magma, Sage, TeX
C_3\rtimes D_{32}
% in TeX
G:=Group("C3:D32");
// GroupNames label
G:=SmallGroup(192,78);
// by ID
G=gap.SmallGroup(192,78);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,254,135,142,675,346,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^3=b^32=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊D32 in TeX
Character table of C3⋊D32 in TeX