Copied to
clipboard

G = C2×C3⋊D16order 192 = 26·3

Direct product of C2 and C3⋊D16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C3⋊D16, D87D6, C62D16, C24.20D4, C12.20D8, D2413C22, C24.23C23, C33(C2×D16), (C6×D8)⋊4C2, (C2×D8)⋊1S3, C3⋊C167C22, C6.62(C2×D8), (C2×C6).41D8, (C2×D24)⋊17C2, C4.8(D4⋊S3), (C2×C8).233D6, (C3×D8)⋊7C22, (C2×C12).179D4, C12.159(C2×D4), C8.13(C3⋊D4), C8.29(C22×S3), (C2×C24).85C22, C22.21(D4⋊S3), (C2×C3⋊C16)⋊6C2, C4.1(C2×C3⋊D4), C2.17(C2×D4⋊S3), (C2×C4).142(C3⋊D4), SmallGroup(192,705)

Series: Derived Chief Lower central Upper central

C1C24 — C2×C3⋊D16
C1C3C6C12C24D24C2×D24 — C2×C3⋊D16
C3C6C12C24 — C2×C3⋊D16
C1C22C2×C4C2×C8C2×D8

Generators and relations for C2×C3⋊D16
 G = < a,b,c,d | a2=b3=c16=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 408 in 98 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, D4, C23, C12, D6, C2×C6, C2×C6, C16, C2×C8, D8, D8, C2×D4, C24, D12, C2×C12, C3×D4, C22×S3, C22×C6, C2×C16, D16, C2×D8, C2×D8, C3⋊C16, D24, D24, C2×C24, C3×D8, C3×D8, C2×D12, C6×D4, C2×D16, C2×C3⋊C16, C3⋊D16, C2×D24, C6×D8, C2×C3⋊D16
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C3⋊D4, C22×S3, D16, C2×D8, D4⋊S3, C2×C3⋊D4, C2×D16, C3⋊D16, C2×D4⋊S3, C2×C3⋊D16

Smallest permutation representation of C2×C3⋊D16
On 96 points
Generators in S96
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 61)(9 62)(10 63)(11 64)(12 49)(13 50)(14 51)(15 52)(16 53)(17 79)(18 80)(19 65)(20 66)(21 67)(22 68)(23 69)(24 70)(25 71)(26 72)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 81)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)
(1 41 71)(2 72 42)(3 43 73)(4 74 44)(5 45 75)(6 76 46)(7 47 77)(8 78 48)(9 33 79)(10 80 34)(11 35 65)(12 66 36)(13 37 67)(14 68 38)(15 39 69)(16 70 40)(17 62 90)(18 91 63)(19 64 92)(20 93 49)(21 50 94)(22 95 51)(23 52 96)(24 81 53)(25 54 82)(26 83 55)(27 56 84)(28 85 57)(29 58 86)(30 87 59)(31 60 88)(32 89 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 90)(18 89)(19 88)(20 87)(21 86)(22 85)(23 84)(24 83)(25 82)(26 81)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 80)(49 59)(50 58)(51 57)(52 56)(53 55)(60 64)(61 63)

G:=sub<Sym(96)| (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,49)(13,50)(14,51)(15,52)(16,53)(17,79)(18,80)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89), (1,41,71)(2,72,42)(3,43,73)(4,74,44)(5,45,75)(6,76,46)(7,47,77)(8,78,48)(9,33,79)(10,80,34)(11,35,65)(12,66,36)(13,37,67)(14,68,38)(15,39,69)(16,70,40)(17,62,90)(18,91,63)(19,64,92)(20,93,49)(21,50,94)(22,95,51)(23,52,96)(24,81,53)(25,54,82)(26,83,55)(27,56,84)(28,85,57)(29,58,86)(30,87,59)(31,60,88)(32,89,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,80)(49,59)(50,58)(51,57)(52,56)(53,55)(60,64)(61,63)>;

G:=Group( (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,49)(13,50)(14,51)(15,52)(16,53)(17,79)(18,80)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89), (1,41,71)(2,72,42)(3,43,73)(4,74,44)(5,45,75)(6,76,46)(7,47,77)(8,78,48)(9,33,79)(10,80,34)(11,35,65)(12,66,36)(13,37,67)(14,68,38)(15,39,69)(16,70,40)(17,62,90)(18,91,63)(19,64,92)(20,93,49)(21,50,94)(22,95,51)(23,52,96)(24,81,53)(25,54,82)(26,83,55)(27,56,84)(28,85,57)(29,58,86)(30,87,59)(31,60,88)(32,89,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,80)(49,59)(50,58)(51,57)(52,56)(53,55)(60,64)(61,63) );

G=PermutationGroup([[(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,61),(9,62),(10,63),(11,64),(12,49),(13,50),(14,51),(15,52),(16,53),(17,79),(18,80),(19,65),(20,66),(21,67),(22,68),(23,69),(24,70),(25,71),(26,72),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,81),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89)], [(1,41,71),(2,72,42),(3,43,73),(4,74,44),(5,45,75),(6,76,46),(7,47,77),(8,78,48),(9,33,79),(10,80,34),(11,35,65),(12,66,36),(13,37,67),(14,68,38),(15,39,69),(16,70,40),(17,62,90),(18,91,63),(19,64,92),(20,93,49),(21,50,94),(22,95,51),(23,52,96),(24,81,53),(25,54,82),(26,83,55),(27,56,84),(28,85,57),(29,58,86),(30,87,59),(31,60,88),(32,89,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,90),(18,89),(19,88),(20,87),(21,86),(22,85),(23,84),(24,83),(25,82),(26,81),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,80),(49,59),(50,58),(51,57),(52,56),(53,55),(60,64),(61,63)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C6D6E6F6G8A8B8C8D12A12B16A···16H24A24B24C24D
order1222222234466666668888121216···1624242424
size111188242422222288882222446···64444

36 irreducible representations

dim111112222222222444
type++++++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8D8C3⋊D4C3⋊D4D16D4⋊S3D4⋊S3C3⋊D16
kernelC2×C3⋊D16C2×C3⋊C16C3⋊D16C2×D24C6×D8C2×D8C24C2×C12C2×C8D8C12C2×C6C8C2×C4C6C4C22C2
# reps114111111222228114

Matrix representation of C2×C3⋊D16 in GL5(𝔽97)

960000
01000
00100
00010
00001
,
10000
0969600
01000
00010
00001
,
960000
01000
0969600
0002845
0002673
,
960000
01000
0969600
00010
000196

G:=sub<GL(5,GF(97))| [96,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,96,1,0,0,0,96,0,0,0,0,0,0,1,0,0,0,0,0,1],[96,0,0,0,0,0,1,96,0,0,0,0,96,0,0,0,0,0,28,26,0,0,0,45,73],[96,0,0,0,0,0,1,96,0,0,0,0,96,0,0,0,0,0,1,1,0,0,0,0,96] >;

C2×C3⋊D16 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes D_{16}
% in TeX

G:=Group("C2xC3:D16");
// GroupNames label

G:=SmallGroup(192,705);
// by ID

G=gap.SmallGroup(192,705);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,675,185,192,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^16=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽