Extensions 1→N→G→Q→1 with N=C2 and Q=D6⋊C8

Direct product G=N×Q with N=C2 and Q=D6⋊C8
dρLabelID
C2×D6⋊C896C2xD6:C8192,667


Non-split extensions G=N.Q with N=C2 and Q=D6⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(D6⋊C8) = D6⋊C16central extension (φ=1)96C2.1(D6:C8)192,66
C2.2(D6⋊C8) = (C2×C24)⋊5C4central extension (φ=1)192C2.2(D6:C8)192,109
C2.3(D6⋊C8) = C4.8Dic12central stem extension (φ=1)192C2.3(D6:C8)192,15
C2.4(D6⋊C8) = C4.17D24central stem extension (φ=1)96C2.4(D6:C8)192,18
C2.5(D6⋊C8) = (C22×S3)⋊C8central stem extension (φ=1)48C2.5(D6:C8)192,27
C2.6(D6⋊C8) = (C2×Dic3)⋊C8central stem extension (φ=1)96C2.6(D6:C8)192,28
C2.7(D6⋊C8) = D122C8central stem extension (φ=1)96C2.7(D6:C8)192,42
C2.8(D6⋊C8) = Dic62C8central stem extension (φ=1)192C2.8(D6:C8)192,43
C2.9(D6⋊C8) = D12.C8central stem extension (φ=1)962C2.9(D6:C8)192,67
C2.10(D6⋊C8) = C8.25D12central stem extension (φ=1)484C2.10(D6:C8)192,73
C2.11(D6⋊C8) = Dic6.C8central stem extension (φ=1)964C2.11(D6:C8)192,74

׿
×
𝔽