extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊D4)⋊1C2 = C24.38D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):1C2 | 192,1049 |
(C4×C3⋊D4)⋊2C2 = C24.42D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):2C2 | 192,1054 |
(C4×C3⋊D4)⋊3C2 = C42.102D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):3C2 | 192,1097 |
(C4×C3⋊D4)⋊4C2 = C42.228D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):4C2 | 192,1107 |
(C4×C3⋊D4)⋊5C2 = C42.229D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):5C2 | 192,1116 |
(C4×C3⋊D4)⋊6C2 = C6.612+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):6C2 | 192,1216 |
(C4×C3⋊D4)⋊7C2 = C6.632+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):7C2 | 192,1219 |
(C4×C3⋊D4)⋊8C2 = C6.652+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):8C2 | 192,1221 |
(C4×C3⋊D4)⋊9C2 = C6.662+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):9C2 | 192,1222 |
(C4×C3⋊D4)⋊10C2 = C6.2- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):10C2 | 192,1066 |
(C4×C3⋊D4)⋊11C2 = C6.112+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):11C2 | 192,1073 |
(C4×C3⋊D4)⋊12C2 = C42.95D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):12C2 | 192,1089 |
(C4×C3⋊D4)⋊13C2 = C42.97D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):13C2 | 192,1091 |
(C4×C3⋊D4)⋊14C2 = Dic6⋊19D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):14C2 | 192,1157 |
(C4×C3⋊D4)⋊15C2 = Dic6⋊20D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):15C2 | 192,1158 |
(C4×C3⋊D4)⋊16C2 = D12⋊19D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):16C2 | 192,1168 |
(C4×C3⋊D4)⋊17C2 = C6.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):17C2 | 192,1170 |
(C4×C3⋊D4)⋊18C2 = D12⋊20D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):18C2 | 192,1171 |
(C4×C3⋊D4)⋊19C2 = C6.432+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):19C2 | 192,1173 |
(C4×C3⋊D4)⋊20C2 = C6.452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):20C2 | 192,1175 |
(C4×C3⋊D4)⋊21C2 = C6.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):21C2 | 192,1177 |
(C4×C3⋊D4)⋊22C2 = D12⋊21D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):22C2 | 192,1189 |
(C4×C3⋊D4)⋊23C2 = D12⋊22D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):23C2 | 192,1190 |
(C4×C3⋊D4)⋊24C2 = Dic6⋊22D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):24C2 | 192,1192 |
(C4×C3⋊D4)⋊25C2 = D4×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):25C2 | 192,1360 |
(C4×C3⋊D4)⋊26C2 = C24.53D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):26C2 | 192,1365 |
(C4×C3⋊D4)⋊27C2 = C6.452- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):27C2 | 192,1376 |
(C4×C3⋊D4)⋊28C2 = C6.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):28C2 | 192,1383 |
(C4×C3⋊D4)⋊29C2 = C6.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):29C2 | 192,1388 |
(C4×C3⋊D4)⋊30C2 = C6.1072- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):30C2 | 192,1390 |
(C4×C3⋊D4)⋊31C2 = C6.1482+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):31C2 | 192,1393 |
(C4×C3⋊D4)⋊32C2 = C42.277D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):32C2 | 192,1038 |
(C4×C3⋊D4)⋊33C2 = C24.35D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):33C2 | 192,1045 |
(C4×C3⋊D4)⋊34C2 = C24.41D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):34C2 | 192,1053 |
(C4×C3⋊D4)⋊35C2 = C6.82+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):35C2 | 192,1063 |
(C4×C3⋊D4)⋊36C2 = C6.62- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):36C2 | 192,1074 |
(C4×C3⋊D4)⋊37C2 = C4×D4⋊2S3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):37C2 | 192,1095 |
(C4×C3⋊D4)⋊38C2 = C42.104D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):38C2 | 192,1099 |
(C4×C3⋊D4)⋊39C2 = C4×S3×D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):39C2 | 192,1103 |
(C4×C3⋊D4)⋊40C2 = C42⋊13D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):40C2 | 192,1104 |
(C4×C3⋊D4)⋊41C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):41C2 | 192,1105 |
(C4×C3⋊D4)⋊42C2 = C42⋊14D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):42C2 | 192,1106 |
(C4×C3⋊D4)⋊43C2 = C42⋊18D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):43C2 | 192,1115 |
(C4×C3⋊D4)⋊44C2 = C42.113D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):44C2 | 192,1117 |
(C4×C3⋊D4)⋊45C2 = C42.114D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):45C2 | 192,1118 |
(C4×C3⋊D4)⋊46C2 = C42⋊19D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):46C2 | 192,1119 |
(C4×C3⋊D4)⋊47C2 = C42.118D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):47C2 | 192,1123 |
(C4×C3⋊D4)⋊48C2 = C6.622+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):48C2 | 192,1218 |
(C4×C3⋊D4)⋊49C2 = C6.642+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):49C2 | 192,1220 |
(C4×C3⋊D4)⋊50C2 = C6.672+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):50C2 | 192,1223 |
(C4×C3⋊D4)⋊51C2 = C24.83D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):51C2 | 192,1350 |
(C4×C3⋊D4)⋊52C2 = C42.93D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):52C2 | 192,1087 |
(C4×C3⋊D4)⋊53C2 = C6.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):53C2 | 192,1160 |
(C4×C3⋊D4)⋊54C2 = C6.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):54C2 | 192,1169 |
(C4×C3⋊D4)⋊55C2 = C6.422+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):55C2 | 192,1172 |
(C4×C3⋊D4)⋊56C2 = C6.442+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):56C2 | 192,1174 |
(C4×C3⋊D4)⋊57C2 = C6.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):57C2 | 192,1196 |
(C4×C3⋊D4)⋊58C2 = C6.202- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):58C2 | 192,1197 |
(C4×C3⋊D4)⋊59C2 = C6.222- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):59C2 | 192,1199 |
(C4×C3⋊D4)⋊60C2 = (C2×D4)⋊43D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 48 | | (C4xC3:D4):60C2 | 192,1387 |
(C4×C3⋊D4)⋊61C2 = (C2×C12)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4):61C2 | 192,1391 |
(C4×C3⋊D4)⋊62C2 = C4×C4○D12 | φ: trivial image | 96 | | (C4xC3:D4):62C2 | 192,1033 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊D4).1C2 = D6⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).1C2 | 192,287 |
(C4×C3⋊D4).2C2 = Dic3⋊M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).2C2 | 192,288 |
(C4×C3⋊D4).3C2 = C6.102+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).3C2 | 192,1070 |
(C4×C3⋊D4).4C2 = C6.52- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).4C2 | 192,1072 |
(C4×C3⋊D4).5C2 = C42.94D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).5C2 | 192,1088 |
(C4×C3⋊D4).6C2 = C42.98D6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).6C2 | 192,1092 |
(C4×C3⋊D4).7C2 = Dic6⋊21D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).7C2 | 192,1191 |
(C4×C3⋊D4).8C2 = C6.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).8C2 | 192,1194 |
(C4×C3⋊D4).9C2 = C6.212- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).9C2 | 192,1198 |
(C4×C3⋊D4).10C2 = C6.232- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).10C2 | 192,1200 |
(C4×C3⋊D4).11C2 = C6.772- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).11C2 | 192,1201 |
(C4×C3⋊D4).12C2 = Q8×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).12C2 | 192,1374 |
(C4×C3⋊D4).13C2 = C3⋊D4⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).13C2 | 192,284 |
(C4×C3⋊D4).14C2 = C3⋊C8⋊26D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).14C2 | 192,289 |
(C4×C3⋊D4).15C2 = C24⋊33D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).15C2 | 192,670 |
(C4×C3⋊D4).16C2 = C24⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).16C2 | 192,686 |
(C4×C3⋊D4).17C2 = C24⋊21D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).17C2 | 192,687 |
(C4×C3⋊D4).18C2 = C6.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊D4 | 96 | | (C4xC3:D4).18C2 | 192,1195 |
(C4×C3⋊D4).19C2 = C8×C3⋊D4 | φ: trivial image | 96 | | (C4xC3:D4).19C2 | 192,668 |