Extensions 1→N→G→Q→1 with N=C4×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C4×C3⋊D4 and Q=C2
dρLabelID
C2×C4×C3⋊D496C2xC4xC3:D4192,1347

Semidirect products G=N:Q with N=C4×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊D4)⋊1C2 = C24.38D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):1C2192,1049
(C4×C3⋊D4)⋊2C2 = C24.42D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):2C2192,1054
(C4×C3⋊D4)⋊3C2 = C42.102D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):3C2192,1097
(C4×C3⋊D4)⋊4C2 = C42.228D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):4C2192,1107
(C4×C3⋊D4)⋊5C2 = C42.229D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):5C2192,1116
(C4×C3⋊D4)⋊6C2 = C6.612+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):6C2192,1216
(C4×C3⋊D4)⋊7C2 = C6.632+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):7C2192,1219
(C4×C3⋊D4)⋊8C2 = C6.652+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):8C2192,1221
(C4×C3⋊D4)⋊9C2 = C6.662+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):9C2192,1222
(C4×C3⋊D4)⋊10C2 = C6.2- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):10C2192,1066
(C4×C3⋊D4)⋊11C2 = C6.112+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):11C2192,1073
(C4×C3⋊D4)⋊12C2 = C42.95D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):12C2192,1089
(C4×C3⋊D4)⋊13C2 = C42.97D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):13C2192,1091
(C4×C3⋊D4)⋊14C2 = Dic619D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):14C2192,1157
(C4×C3⋊D4)⋊15C2 = Dic620D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):15C2192,1158
(C4×C3⋊D4)⋊16C2 = D1219D4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):16C2192,1168
(C4×C3⋊D4)⋊17C2 = C6.732- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):17C2192,1170
(C4×C3⋊D4)⋊18C2 = D1220D4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):18C2192,1171
(C4×C3⋊D4)⋊19C2 = C6.432+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):19C2192,1173
(C4×C3⋊D4)⋊20C2 = C6.452+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):20C2192,1175
(C4×C3⋊D4)⋊21C2 = C6.1152+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):21C2192,1177
(C4×C3⋊D4)⋊22C2 = D1221D4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):22C2192,1189
(C4×C3⋊D4)⋊23C2 = D1222D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):23C2192,1190
(C4×C3⋊D4)⋊24C2 = Dic622D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):24C2192,1192
(C4×C3⋊D4)⋊25C2 = D4×C3⋊D4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):25C2192,1360
(C4×C3⋊D4)⋊26C2 = C24.53D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):26C2192,1365
(C4×C3⋊D4)⋊27C2 = C6.452- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):27C2192,1376
(C4×C3⋊D4)⋊28C2 = C6.1042- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):28C2192,1383
(C4×C3⋊D4)⋊29C2 = C6.1452+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):29C2192,1388
(C4×C3⋊D4)⋊30C2 = C6.1072- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):30C2192,1390
(C4×C3⋊D4)⋊31C2 = C6.1482+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):31C2192,1393
(C4×C3⋊D4)⋊32C2 = C42.277D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):32C2192,1038
(C4×C3⋊D4)⋊33C2 = C24.35D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):33C2192,1045
(C4×C3⋊D4)⋊34C2 = C24.41D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):34C2192,1053
(C4×C3⋊D4)⋊35C2 = C6.82+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):35C2192,1063
(C4×C3⋊D4)⋊36C2 = C6.62- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):36C2192,1074
(C4×C3⋊D4)⋊37C2 = C4×D42S3φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):37C2192,1095
(C4×C3⋊D4)⋊38C2 = C42.104D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):38C2192,1099
(C4×C3⋊D4)⋊39C2 = C4×S3×D4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):39C2192,1103
(C4×C3⋊D4)⋊40C2 = C4213D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):40C2192,1104
(C4×C3⋊D4)⋊41C2 = C42.108D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):41C2192,1105
(C4×C3⋊D4)⋊42C2 = C4214D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):42C2192,1106
(C4×C3⋊D4)⋊43C2 = C4218D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):43C2192,1115
(C4×C3⋊D4)⋊44C2 = C42.113D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):44C2192,1117
(C4×C3⋊D4)⋊45C2 = C42.114D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):45C2192,1118
(C4×C3⋊D4)⋊46C2 = C4219D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):46C2192,1119
(C4×C3⋊D4)⋊47C2 = C42.118D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):47C2192,1123
(C4×C3⋊D4)⋊48C2 = C6.622+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):48C2192,1218
(C4×C3⋊D4)⋊49C2 = C6.642+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):49C2192,1220
(C4×C3⋊D4)⋊50C2 = C6.672+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):50C2192,1223
(C4×C3⋊D4)⋊51C2 = C24.83D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):51C2192,1350
(C4×C3⋊D4)⋊52C2 = C42.93D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):52C2192,1087
(C4×C3⋊D4)⋊53C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):53C2192,1160
(C4×C3⋊D4)⋊54C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):54C2192,1169
(C4×C3⋊D4)⋊55C2 = C6.422+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):55C2192,1172
(C4×C3⋊D4)⋊56C2 = C6.442+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):56C2192,1174
(C4×C3⋊D4)⋊57C2 = C6.532+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):57C2192,1196
(C4×C3⋊D4)⋊58C2 = C6.202- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):58C2192,1197
(C4×C3⋊D4)⋊59C2 = C6.222- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):59C2192,1199
(C4×C3⋊D4)⋊60C2 = (C2×D4)⋊43D6φ: C2/C1C2 ⊆ Out C4×C3⋊D448(C4xC3:D4):60C2192,1387
(C4×C3⋊D4)⋊61C2 = (C2×C12)⋊17D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4):61C2192,1391
(C4×C3⋊D4)⋊62C2 = C4×C4○D12φ: trivial image96(C4xC3:D4):62C2192,1033

Non-split extensions G=N.Q with N=C4×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊D4).1C2 = D62M4(2)φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).1C2192,287
(C4×C3⋊D4).2C2 = Dic3⋊M4(2)φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).2C2192,288
(C4×C3⋊D4).3C2 = C6.102+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).3C2192,1070
(C4×C3⋊D4).4C2 = C6.52- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).4C2192,1072
(C4×C3⋊D4).5C2 = C42.94D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).5C2192,1088
(C4×C3⋊D4).6C2 = C42.98D6φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).6C2192,1092
(C4×C3⋊D4).7C2 = Dic621D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).7C2192,1191
(C4×C3⋊D4).8C2 = C6.1182+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).8C2192,1194
(C4×C3⋊D4).9C2 = C6.212- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).9C2192,1198
(C4×C3⋊D4).10C2 = C6.232- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).10C2192,1200
(C4×C3⋊D4).11C2 = C6.772- 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).11C2192,1201
(C4×C3⋊D4).12C2 = Q8×C3⋊D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).12C2192,1374
(C4×C3⋊D4).13C2 = C3⋊D4⋊C8φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).13C2192,284
(C4×C3⋊D4).14C2 = C3⋊C826D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).14C2192,289
(C4×C3⋊D4).15C2 = C2433D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).15C2192,670
(C4×C3⋊D4).16C2 = C24⋊D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).16C2192,686
(C4×C3⋊D4).17C2 = C2421D4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).17C2192,687
(C4×C3⋊D4).18C2 = C6.522+ 1+4φ: C2/C1C2 ⊆ Out C4×C3⋊D496(C4xC3:D4).18C2192,1195
(C4×C3⋊D4).19C2 = C8×C3⋊D4φ: trivial image96(C4xC3:D4).19C2192,668

׿
×
𝔽