Copied to
clipboard

G = Dic619D4order 192 = 26·3

7th semidirect product of Dic6 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic619D4, C6.692- 1+4, C4⋊D46S3, C4⋊C4.176D6, C33(Q85D4), C4.108(S3×D4), C22⋊C4.5D6, C4.D1219C2, (D4×Dic3)⋊15C2, (C2×D4).151D6, C12.224(C2×D4), C6.61(C22×D4), C23.14D69C2, (C2×C6).142C24, D6⋊C4.11C22, C2.27(Q8○D12), Dic3.20(C2×D4), (C22×C4).234D6, Dic6⋊C419C2, C23.12D614C2, C222(D42S3), (C2×C12).500C23, (C22×Dic6)⋊16C2, (C6×D4).116C22, (C22×C6).13C23, C23.19(C22×S3), Dic3.D416C2, C23.11D617C2, Dic3⋊C4.13C22, (C22×S3).61C23, C4⋊Dic3.204C22, C22.163(S3×C23), (C2×Dic3).65C23, (C4×Dic3).89C22, (C22×C12).236C22, (C2×Dic6).245C22, C6.D4.20C22, (C22×Dic3).103C22, C2.34(C2×S3×D4), (C2×C6)⋊4(C4○D4), (C3×C4⋊D4)⋊7C2, (C4×C3⋊D4)⋊14C2, C6.80(C2×C4○D4), (S3×C2×C4).81C22, (C2×D42S3)⋊10C2, C2.31(C2×D42S3), (C3×C4⋊C4).138C22, (C2×C4).173(C22×S3), (C3×C22⋊C4).7C22, (C2×C3⋊D4).118C22, SmallGroup(192,1157)

Series: Derived Chief Lower central Upper central

C1C2×C6 — Dic619D4
C1C3C6C2×C6C2×Dic3C2×Dic6C22×Dic6 — Dic619D4
C3C2×C6 — Dic619D4
C1C22C4⋊D4

Generators and relations for Dic619D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, cac-1=a7, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 704 in 290 conjugacy classes, 107 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic6, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C4.4D4, C22×Q8, C2×C4○D4, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C2×Dic6, C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, Q85D4, Dic3.D4, C23.11D6, Dic6⋊C4, C4.D12, C4×C3⋊D4, D4×Dic3, C23.12D6, C23.14D6, C3×C4⋊D4, C22×Dic6, C2×D42S3, Dic619D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, 2- 1+4, S3×D4, D42S3, S3×C23, Q85D4, C2×S3×D4, C2×D42S3, Q8○D12, Dic619D4

Smallest permutation representation of Dic619D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 7 64)(2 69 8 63)(3 68 9 62)(4 67 10 61)(5 66 11 72)(6 65 12 71)(13 26 19 32)(14 25 20 31)(15 36 21 30)(16 35 22 29)(17 34 23 28)(18 33 24 27)(37 77 43 83)(38 76 44 82)(39 75 45 81)(40 74 46 80)(41 73 47 79)(42 84 48 78)(49 96 55 90)(50 95 56 89)(51 94 57 88)(52 93 58 87)(53 92 59 86)(54 91 60 85)
(1 53 83 24)(2 60 84 19)(3 55 73 14)(4 50 74 21)(5 57 75 16)(6 52 76 23)(7 59 77 18)(8 54 78 13)(9 49 79 20)(10 56 80 15)(11 51 81 22)(12 58 82 17)(25 68 90 47)(26 63 91 42)(27 70 92 37)(28 65 93 44)(29 72 94 39)(30 67 95 46)(31 62 96 41)(32 69 85 48)(33 64 86 43)(34 71 87 38)(35 66 88 45)(36 61 89 40)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 68)(14 69)(15 70)(16 71)(17 72)(18 61)(19 62)(20 63)(21 64)(22 65)(23 66)(24 67)(37 56)(38 57)(39 58)(40 59)(41 60)(42 49)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,7,64)(2,69,8,63)(3,68,9,62)(4,67,10,61)(5,66,11,72)(6,65,12,71)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27)(37,77,43,83)(38,76,44,82)(39,75,45,81)(40,74,46,80)(41,73,47,79)(42,84,48,78)(49,96,55,90)(50,95,56,89)(51,94,57,88)(52,93,58,87)(53,92,59,86)(54,91,60,85), (1,53,83,24)(2,60,84,19)(3,55,73,14)(4,50,74,21)(5,57,75,16)(6,52,76,23)(7,59,77,18)(8,54,78,13)(9,49,79,20)(10,56,80,15)(11,51,81,22)(12,58,82,17)(25,68,90,47)(26,63,91,42)(27,70,92,37)(28,65,93,44)(29,72,94,39)(30,67,95,46)(31,62,96,41)(32,69,85,48)(33,64,86,43)(34,71,87,38)(35,66,88,45)(36,61,89,40), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,68)(14,69)(15,70)(16,71)(17,72)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(37,56)(38,57)(39,58)(40,59)(41,60)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,7,64)(2,69,8,63)(3,68,9,62)(4,67,10,61)(5,66,11,72)(6,65,12,71)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27)(37,77,43,83)(38,76,44,82)(39,75,45,81)(40,74,46,80)(41,73,47,79)(42,84,48,78)(49,96,55,90)(50,95,56,89)(51,94,57,88)(52,93,58,87)(53,92,59,86)(54,91,60,85), (1,53,83,24)(2,60,84,19)(3,55,73,14)(4,50,74,21)(5,57,75,16)(6,52,76,23)(7,59,77,18)(8,54,78,13)(9,49,79,20)(10,56,80,15)(11,51,81,22)(12,58,82,17)(25,68,90,47)(26,63,91,42)(27,70,92,37)(28,65,93,44)(29,72,94,39)(30,67,95,46)(31,62,96,41)(32,69,85,48)(33,64,86,43)(34,71,87,38)(35,66,88,45)(36,61,89,40), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,68)(14,69)(15,70)(16,71)(17,72)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(37,56)(38,57)(39,58)(40,59)(41,60)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,7,64),(2,69,8,63),(3,68,9,62),(4,67,10,61),(5,66,11,72),(6,65,12,71),(13,26,19,32),(14,25,20,31),(15,36,21,30),(16,35,22,29),(17,34,23,28),(18,33,24,27),(37,77,43,83),(38,76,44,82),(39,75,45,81),(40,74,46,80),(41,73,47,79),(42,84,48,78),(49,96,55,90),(50,95,56,89),(51,94,57,88),(52,93,58,87),(53,92,59,86),(54,91,60,85)], [(1,53,83,24),(2,60,84,19),(3,55,73,14),(4,50,74,21),(5,57,75,16),(6,52,76,23),(7,59,77,18),(8,54,78,13),(9,49,79,20),(10,56,80,15),(11,51,81,22),(12,58,82,17),(25,68,90,47),(26,63,91,42),(27,70,92,37),(28,65,93,44),(29,72,94,39),(30,67,95,46),(31,62,96,41),(32,69,85,48),(33,64,86,43),(34,71,87,38),(35,66,88,45),(36,61,89,40)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,68),(14,69),(15,70),(16,71),(17,72),(18,61),(19,62),(20,63),(21,64),(22,65),(23,66),(24,67),(37,56),(38,57),(39,58),(40,59),(41,60),(42,49),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F···4M4N4O4P6A6B6C6D6E6F6G12A12B12C12D12E12F
order1222222223444444···44446666666121212121212
size11112244122224446···61212122224488444488

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+--
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D42- 1+4S3×D4D42S3Q8○D12
kernelDic619D4Dic3.D4C23.11D6Dic6⋊C4C4.D12C4×C3⋊D4D4×Dic3C23.12D6C23.14D6C3×C4⋊D4C22×Dic6C2×D42S3C4⋊D4Dic6C22⋊C4C4⋊C4C22×C4C2×D4C2×C6C6C4C22C2
# reps12211121211114211341222

Matrix representation of Dic619D4 in GL6(𝔽13)

1200000
0120000
008000
005500
0000112
000010
,
100000
010000
0051000
000800
0000012
0000120
,
0120000
100000
001200
0001200
0000120
0000012
,
010000
100000
0012000
0001200
0000120
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,5,0,0,0,0,0,5,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,10,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,2,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

Dic619D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes_{19}D_4
% in TeX

G:=Group("Dic6:19D4");
// GroupNames label

G:=SmallGroup(192,1157);
// by ID

G=gap.SmallGroup(192,1157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,477,232,570,185,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽