Copied to
clipboard

G = Dic6:19D4order 192 = 26·3

7th semidirect product of Dic6 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6:19D4, C6.692- 1+4, C4:D4:6S3, C4:C4.176D6, C3:3(Q8:5D4), C4.108(S3xD4), C22:C4.5D6, C4.D12:19C2, (D4xDic3):15C2, (C2xD4).151D6, C12.224(C2xD4), C6.61(C22xD4), C23.14D6:9C2, (C2xC6).142C24, D6:C4.11C22, C2.27(Q8oD12), Dic3.20(C2xD4), (C22xC4).234D6, Dic6:C4:19C2, C23.12D6:14C2, C22:2(D4:2S3), (C2xC12).500C23, (C22xDic6):16C2, (C6xD4).116C22, (C22xC6).13C23, C23.19(C22xS3), Dic3.D4:16C2, C23.11D6:17C2, Dic3:C4.13C22, (C22xS3).61C23, C4:Dic3.204C22, C22.163(S3xC23), (C2xDic3).65C23, (C4xDic3).89C22, (C22xC12).236C22, (C2xDic6).245C22, C6.D4.20C22, (C22xDic3).103C22, C2.34(C2xS3xD4), (C2xC6):4(C4oD4), (C3xC4:D4):7C2, (C4xC3:D4):14C2, C6.80(C2xC4oD4), (S3xC2xC4).81C22, (C2xD4:2S3):10C2, C2.31(C2xD4:2S3), (C3xC4:C4).138C22, (C2xC4).173(C22xS3), (C3xC22:C4).7C22, (C2xC3:D4).118C22, SmallGroup(192,1157)

Series: Derived Chief Lower central Upper central

C1C2xC6 — Dic6:19D4
C1C3C6C2xC6C2xDic3C2xDic6C22xDic6 — Dic6:19D4
C3C2xC6 — Dic6:19D4
C1C22C4:D4

Generators and relations for Dic6:19D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, cac-1=a7, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 704 in 290 conjugacy classes, 107 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, Dic6, Dic6, C4xS3, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C4xD4, C4xQ8, C4:D4, C4:D4, C22:Q8, C4.4D4, C22xQ8, C2xC4oD4, C4xDic3, C4xDic3, Dic3:C4, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, C2xDic6, C2xDic6, S3xC2xC4, D4:2S3, C22xDic3, C2xC3:D4, C2xC3:D4, C22xC12, C6xD4, C6xD4, Q8:5D4, Dic3.D4, C23.11D6, Dic6:C4, C4.D12, C4xC3:D4, D4xDic3, C23.12D6, C23.14D6, C3xC4:D4, C22xDic6, C2xD4:2S3, Dic6:19D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, 2- 1+4, S3xD4, D4:2S3, S3xC23, Q8:5D4, C2xS3xD4, C2xD4:2S3, Q8oD12, Dic6:19D4

Smallest permutation representation of Dic6:19D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 7 64)(2 69 8 63)(3 68 9 62)(4 67 10 61)(5 66 11 72)(6 65 12 71)(13 26 19 32)(14 25 20 31)(15 36 21 30)(16 35 22 29)(17 34 23 28)(18 33 24 27)(37 77 43 83)(38 76 44 82)(39 75 45 81)(40 74 46 80)(41 73 47 79)(42 84 48 78)(49 96 55 90)(50 95 56 89)(51 94 57 88)(52 93 58 87)(53 92 59 86)(54 91 60 85)
(1 53 83 24)(2 60 84 19)(3 55 73 14)(4 50 74 21)(5 57 75 16)(6 52 76 23)(7 59 77 18)(8 54 78 13)(9 49 79 20)(10 56 80 15)(11 51 81 22)(12 58 82 17)(25 68 90 47)(26 63 91 42)(27 70 92 37)(28 65 93 44)(29 72 94 39)(30 67 95 46)(31 62 96 41)(32 69 85 48)(33 64 86 43)(34 71 87 38)(35 66 88 45)(36 61 89 40)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 68)(14 69)(15 70)(16 71)(17 72)(18 61)(19 62)(20 63)(21 64)(22 65)(23 66)(24 67)(37 56)(38 57)(39 58)(40 59)(41 60)(42 49)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,7,64)(2,69,8,63)(3,68,9,62)(4,67,10,61)(5,66,11,72)(6,65,12,71)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27)(37,77,43,83)(38,76,44,82)(39,75,45,81)(40,74,46,80)(41,73,47,79)(42,84,48,78)(49,96,55,90)(50,95,56,89)(51,94,57,88)(52,93,58,87)(53,92,59,86)(54,91,60,85), (1,53,83,24)(2,60,84,19)(3,55,73,14)(4,50,74,21)(5,57,75,16)(6,52,76,23)(7,59,77,18)(8,54,78,13)(9,49,79,20)(10,56,80,15)(11,51,81,22)(12,58,82,17)(25,68,90,47)(26,63,91,42)(27,70,92,37)(28,65,93,44)(29,72,94,39)(30,67,95,46)(31,62,96,41)(32,69,85,48)(33,64,86,43)(34,71,87,38)(35,66,88,45)(36,61,89,40), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,68)(14,69)(15,70)(16,71)(17,72)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(37,56)(38,57)(39,58)(40,59)(41,60)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,7,64)(2,69,8,63)(3,68,9,62)(4,67,10,61)(5,66,11,72)(6,65,12,71)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27)(37,77,43,83)(38,76,44,82)(39,75,45,81)(40,74,46,80)(41,73,47,79)(42,84,48,78)(49,96,55,90)(50,95,56,89)(51,94,57,88)(52,93,58,87)(53,92,59,86)(54,91,60,85), (1,53,83,24)(2,60,84,19)(3,55,73,14)(4,50,74,21)(5,57,75,16)(6,52,76,23)(7,59,77,18)(8,54,78,13)(9,49,79,20)(10,56,80,15)(11,51,81,22)(12,58,82,17)(25,68,90,47)(26,63,91,42)(27,70,92,37)(28,65,93,44)(29,72,94,39)(30,67,95,46)(31,62,96,41)(32,69,85,48)(33,64,86,43)(34,71,87,38)(35,66,88,45)(36,61,89,40), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,68)(14,69)(15,70)(16,71)(17,72)(18,61)(19,62)(20,63)(21,64)(22,65)(23,66)(24,67)(37,56)(38,57)(39,58)(40,59)(41,60)(42,49)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,7,64),(2,69,8,63),(3,68,9,62),(4,67,10,61),(5,66,11,72),(6,65,12,71),(13,26,19,32),(14,25,20,31),(15,36,21,30),(16,35,22,29),(17,34,23,28),(18,33,24,27),(37,77,43,83),(38,76,44,82),(39,75,45,81),(40,74,46,80),(41,73,47,79),(42,84,48,78),(49,96,55,90),(50,95,56,89),(51,94,57,88),(52,93,58,87),(53,92,59,86),(54,91,60,85)], [(1,53,83,24),(2,60,84,19),(3,55,73,14),(4,50,74,21),(5,57,75,16),(6,52,76,23),(7,59,77,18),(8,54,78,13),(9,49,79,20),(10,56,80,15),(11,51,81,22),(12,58,82,17),(25,68,90,47),(26,63,91,42),(27,70,92,37),(28,65,93,44),(29,72,94,39),(30,67,95,46),(31,62,96,41),(32,69,85,48),(33,64,86,43),(34,71,87,38),(35,66,88,45),(36,61,89,40)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,68),(14,69),(15,70),(16,71),(17,72),(18,61),(19,62),(20,63),(21,64),(22,65),(23,66),(24,67),(37,56),(38,57),(39,58),(40,59),(41,60),(42,49),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F···4M4N4O4P6A6B6C6D6E6F6G12A12B12C12D12E12F
order1222222223444444···44446666666121212121212
size11112244122224446···61212122224488444488

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+--
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD42- 1+4S3xD4D4:2S3Q8oD12
kernelDic6:19D4Dic3.D4C23.11D6Dic6:C4C4.D12C4xC3:D4D4xDic3C23.12D6C23.14D6C3xC4:D4C22xDic6C2xD4:2S3C4:D4Dic6C22:C4C4:C4C22xC4C2xD4C2xC6C6C4C22C2
# reps12211121211114211341222

Matrix representation of Dic6:19D4 in GL6(F13)

1200000
0120000
008000
005500
0000112
000010
,
100000
010000
0051000
000800
0000012
0000120
,
0120000
100000
001200
0001200
0000120
0000012
,
010000
100000
0012000
0001200
0000120
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,5,0,0,0,0,0,5,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,10,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,2,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

Dic6:19D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes_{19}D_4
% in TeX

G:=Group("Dic6:19D4");
// GroupNames label

G:=SmallGroup(192,1157);
// by ID

G=gap.SmallGroup(192,1157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,477,232,570,185,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<