Copied to
clipboard

G = C6.422+ 1+4order 192 = 26·3

42nd non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2xD4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.422+ 1+4, C4:C4:7D6, (C2xD4):9D6, C4:D4:16S3, C22:C4:29D6, (C22xC4):23D6, C23:2D6:12C2, D6:3D4:22C2, D6:Q8:15C2, D6.4(C4oD4), (C6xD4):15C22, (C2xC6).157C24, (C2xC12).42C23, D6:C4.70C22, C4:Dic3:33C22, Dic3:4D4:10C2, C23.14D6:14C2, C23.12D6:18C2, C2.44(D4:6D6), Dic3:C4:29C22, (C22xC12):41C22, C3:4(C22.32C24), (C4xDic3):24C22, (C2xDic6):26C22, C23.8D6:18C2, (C22xC6).24C23, C23.27(C22xS3), C23.11D6:20C2, C23.23D6:22C2, C6.D4:25C22, C23.28D6:22C2, (C22xS3).65C23, (S3xC23).49C22, C22.178(S3xC23), (C2xDic3).76C23, (C22xDic3):21C22, (C4xC3:D4):55C2, (S3xC22:C4):7C2, C4:C4:S3:13C2, C2.41(S3xC4oD4), (C3xC4:D4):19C2, (C3xC4:C4):14C22, C6.154(C2xC4oD4), (S3xC2xC4).85C22, (C3xC22:C4):16C22, (C2xC4).178(C22xS3), (C2xC3:D4).30C22, SmallGroup(192,1172)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C6.422+ 1+4
C1C3C6C2xC6C22xS3S3xC23S3xC22:C4 — C6.422+ 1+4
C3C2xC6 — C6.422+ 1+4
C1C22C4:D4

Generators and relations for C6.422+ 1+4
 G = < a,b,c,d,e | a6=b4=c2=e2=1, d2=a3b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a3b-1, bd=db, be=eb, dcd-1=ece=a3c, ede=a3b2d >

Subgroups: 720 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C24, Dic6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C4:D4, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C22xDic3, C2xC3:D4, C22xC12, C6xD4, S3xC23, C22.32C24, C23.8D6, S3xC22:C4, Dic3:4D4, C23.11D6, D6:Q8, C4:C4:S3, C4xC3:D4, C23.28D6, C23.23D6, C23.12D6, C23:2D6, D6:3D4, C23.14D6, C3xC4:D4, C6.422+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, S3xC23, C22.32C24, D4:6D6, S3xC4oD4, C6.422+ 1+4

Smallest permutation representation of C6.422+ 1+4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 25 10 34)(2 26 11 35)(3 27 12 36)(4 28 7 31)(5 29 8 32)(6 30 9 33)(13 40 22 43)(14 41 23 44)(15 42 24 45)(16 37 19 46)(17 38 20 47)(18 39 21 48)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 19 7 13)(2 24 8 18)(3 23 9 17)(4 22 10 16)(5 21 11 15)(6 20 12 14)(25 46 31 40)(26 45 32 39)(27 44 33 38)(28 43 34 37)(29 48 35 42)(30 47 36 41)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,46,31,40)(26,45,32,39)(27,44,33,38)(28,43,34,37)(29,48,35,42)(30,47,36,41), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,46,31,40)(26,45,32,39)(27,44,33,38)(28,43,34,37)(29,48,35,42)(30,47,36,41), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,25,10,34),(2,26,11,35),(3,27,12,36),(4,28,7,31),(5,29,8,32),(6,30,9,33),(13,40,22,43),(14,41,23,44),(15,42,24,45),(16,37,19,46),(17,38,20,47),(18,39,21,48)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,19,7,13),(2,24,8,18),(3,23,9,17),(4,22,10,16),(5,21,11,15),(6,20,12,14),(25,46,31,40),(26,45,32,39),(27,44,33,38),(28,43,34,37),(29,48,35,42),(30,47,36,41)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H···4L6A6B6C6D6E6F6G12A12B12C12D12E12F
order1222222222344444444···46666666121212121212
size111144466122224446612···122224488444488

36 irreducible representations

dim111111111111111222222444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4oD42+ 1+4D4:6D6S3xC4oD4
kernelC6.422+ 1+4C23.8D6S3xC22:C4Dic3:4D4C23.11D6D6:Q8C4:C4:S3C4xC3:D4C23.28D6C23.23D6C23.12D6C23:2D6D6:3D4C23.14D6C3xC4:D4C4:D4C22:C4C4:C4C22xC4C2xD4D6C6C2C2
# reps111111111112111121134242

Matrix representation of C6.422+ 1+4 in GL6(F13)

1200000
0120000
001100
0012000
000011
0000120
,
500000
050000
0000119
000042
0011900
004200
,
1200000
010000
0012000
0001200
000010
000001
,
0120000
1200000
000010
00001212
0012000
001100
,
010000
100000
000010
000001
001000
000100

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,1,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,11,4,0,0,0,0,9,2,0,0,11,4,0,0,0,0,9,2,0,0],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,1,12,0,0,0,0,0,12,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C6.422+ 1+4 in GAP, Magma, Sage, TeX

C_6._{42}2_+^{1+4}
% in TeX

G:=Group("C6.42ES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1172);
// by ID

G=gap.SmallGroup(192,1172);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,675,570,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=c^2=e^2=1,d^2=a^3*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^3*b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=a^3*c,e*d*e=a^3*b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<