Extensions 1→N→G→Q→1 with N=C2×D12 and Q=C4

Direct product G=N×Q with N=C2×D12 and Q=C4
dρLabelID
C2×C4×D1296C2xC4xD12192,1032

Semidirect products G=N:Q with N=C2×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D12)⋊1C4 = C6.C4≀C2φ: C4/C1C4 ⊆ Out C2×D1248(C2xD12):1C4192,10
(C2×D12)⋊2C4 = C22.2D24φ: C4/C1C4 ⊆ Out C2×D1248(C2xD12):2C4192,29
(C2×D12)⋊3C4 = C23.2D12φ: C4/C1C4 ⊆ Out C2×D12248+(C2xD12):3C4192,33
(C2×D12)⋊4C4 = S3×C23⋊C4φ: C4/C1C4 ⊆ Out C2×D12248+(C2xD12):4C4192,302
(C2×D12)⋊5C4 = (C2×C4)⋊9D12φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):5C4192,224
(C2×D12)⋊6C4 = C2×C424S3φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12):6C4192,486
(C2×D12)⋊7C4 = (C2×C4)⋊6D12φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):7C4192,498
(C2×D12)⋊8C4 = C2×C2.D24φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):8C4192,671
(C2×D12)⋊9C4 = C2×C6.D8φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):9C4192,524
(C2×D12)⋊10C4 = (C2×D12)⋊10C4φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):10C4192,547
(C2×D12)⋊11C4 = C4⋊C436D6φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12):11C4192,560
(C2×D12)⋊12C4 = C426D6φ: C4/C2C2 ⊆ Out C2×D12484(C2xD12):12C4192,564
(C2×D12)⋊13C4 = (C2×D12)⋊13C4φ: C4/C2C2 ⊆ Out C2×D12484(C2xD12):13C4192,565
(C2×D12)⋊14C4 = C23.53D12φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12):14C4192,690
(C2×D12)⋊15C4 = C2×D12⋊C4φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12):15C4192,697
(C2×D12)⋊16C4 = M4(2)⋊24D6φ: C4/C2C2 ⊆ Out C2×D12484(C2xD12):16C4192,698
(C2×D12)⋊17C4 = C2×Dic35D4φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12):17C4192,1062
(C2×D12)⋊18C4 = C429D6φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12):18C4192,1080

Non-split extensions G=N.Q with N=C2×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D12).1C4 = C42.D6φ: C4/C1C4 ⊆ Out C2×D1296(C2xD12).1C4192,23
(C2×D12).2C4 = C4.D24φ: C4/C1C4 ⊆ Out C2×D1296(C2xD12).2C4192,44
(C2×D12).3C4 = (C2×C4).D12φ: C4/C1C4 ⊆ Out C2×D12488+(C2xD12).3C4192,36
(C2×D12).4C4 = M4(2).21D6φ: C4/C1C4 ⊆ Out C2×D12488+(C2xD12).4C4192,310
(C2×D12).5C4 = C4.17D24φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).5C4192,18
(C2×D12).6C4 = C86D12φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).6C4192,247
(C2×D12).7C4 = C89D12φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).7C4192,265
(C2×D12).8C4 = D6⋊C8⋊C2φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).8C4192,286
(C2×D12).9C4 = D63M4(2)φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).9C4192,395
(C2×D12).10C4 = (C22×C8)⋊7S3φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).10C4192,669
(C2×D12).11C4 = D122C8φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).11C4192,42
(C2×D12).12C4 = D12⋊C8φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).12C4192,393
(C2×D12).13C4 = C122M4(2)φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).13C4192,397
(C2×D12).14C4 = D6⋊C840C2φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).14C4192,688
(C2×D12).15C4 = C2×C12.46D4φ: C4/C2C2 ⊆ Out C2×D1248(C2xD12).15C4192,689
(C2×D12).16C4 = C2×D12.C4φ: C4/C2C2 ⊆ Out C2×D1296(C2xD12).16C4192,1303
(C2×D12).17C4 = M4(2)⋊26D6φ: C4/C2C2 ⊆ Out C2×D12484(C2xD12).17C4192,1304
(C2×D12).18C4 = C8×D12φ: trivial image96(C2xD12).18C4192,245
(C2×D12).19C4 = C2×C8○D12φ: trivial image96(C2xD12).19C4192,1297

׿
×
𝔽