Extensions 1→N→G→Q→1 with N=C2×SD16 and Q=S3

Direct product G=N×Q with N=C2×SD16 and Q=S3
dρLabelID
C2×S3×SD1648C2xS3xSD16192,1317

Semidirect products G=N:Q with N=C2×SD16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×SD16)⋊1S3 = C248D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):1S3192,733
(C2×SD16)⋊2S3 = C249D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):2S3192,735
(C2×SD16)⋊3S3 = C24.44D4φ: S3/C3C2 ⊆ Out C2×SD16484(C2xSD16):3S3192,736
(C2×SD16)⋊4S3 = C2×Q83D6φ: S3/C3C2 ⊆ Out C2×SD1648(C2xSD16):4S3192,1318
(C2×SD16)⋊5S3 = C2×D4.D6φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):5S3192,1319
(C2×SD16)⋊6S3 = SD1613D6φ: S3/C3C2 ⊆ Out C2×SD16484(C2xSD16):6S3192,1321
(C2×SD16)⋊7S3 = Dic35SD16φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):7S3192,722
(C2×SD16)⋊8S3 = (C3×D4).D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):8S3192,724
(C2×SD16)⋊9S3 = C24.43D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):9S3192,727
(C2×SD16)⋊10S3 = D66SD16φ: S3/C3C2 ⊆ Out C2×SD1648(C2xSD16):10S3192,728
(C2×SD16)⋊11S3 = D68SD16φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):11S3192,729
(C2×SD16)⋊12S3 = C2414D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):12S3192,730
(C2×SD16)⋊13S3 = D127D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):13S3192,731
(C2×SD16)⋊14S3 = Dic6.16D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):14S3192,732
(C2×SD16)⋊15S3 = C2415D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16):15S3192,734
(C2×SD16)⋊16S3 = C2×Q8.7D6φ: trivial image96(C2xSD16):16S3192,1320

Non-split extensions G=N.Q with N=C2×SD16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×SD16).1S3 = SD16⋊Dic3φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16).1S3192,723
(C2×SD16).2S3 = C24.31D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16).2S3192,726
(C2×SD16).3S3 = Dic33SD16φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16).3S3192,721
(C2×SD16).4S3 = (C3×Q8).D4φ: S3/C3C2 ⊆ Out C2×SD1696(C2xSD16).4S3192,725
(C2×SD16).5S3 = Dic3×SD16φ: trivial image96(C2xSD16).5S3192,720

׿
×
𝔽