Copied to
clipboard

G = Dic6.16D4order 192 = 26·3

16th non-split extension by Dic6 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6.16D4, D6:C8:35C2, C4.65(S3xD4), D6:3Q8:5C2, (C3xD4).10D4, (C2xC8).149D6, (C2xQ8).79D6, C6.60C22wrC2, (C6xSD16):23C2, (C2xSD16):14S3, (C2xD4).147D6, C6.65(C4oD8), C12.177(C2xD4), C3:5(D4.7D4), D4.9(C3:D4), D4:Dic3:35C2, C2.Dic12:36C2, (C6xD4).99C22, (C22xS3).38D4, C22.270(S3xD4), (C6xQ8).79C22, C2.28(C23:2D6), (C2xC12).450C23, (C2xC24).296C22, (C2xDic3).185D4, C2.30(D4.D6), C6.50(C8.C22), C2.31(Q8.7D6), C4:Dic3.177C22, (C2xDic6).128C22, C4.45(C2xC3:D4), (C2xC3:Q16):19C2, (C2xC6).362(C2xD4), (S3xC2xC4).50C22, (C2xD4:2S3).6C2, (C2xC3:C8).159C22, (C2xC4).539(C22xS3), SmallGroup(192,732)

Series: Derived Chief Lower central Upper central

C1C2xC12 — Dic6.16D4
C1C3C6C2xC6C2xC12S3xC2xC4C2xD4:2S3 — Dic6.16D4
C3C6C2xC12 — Dic6.16D4
C1C22C2xC4C2xSD16

Generators and relations for Dic6.16D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=cac-1=a-1, dad=a5, cbc-1=a9b, dbd=a6b, dcd=a6c-1 >

Subgroups: 440 in 152 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, SD16, Q16, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C3:C8, C24, Dic6, Dic6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xC6, C22:C8, D4:C4, Q8:C4, C22:Q8, C2xSD16, C2xQ16, C2xC4oD4, C2xC3:C8, Dic3:C4, C4:Dic3, D6:C4, C3:Q16, C2xC24, C3xSD16, C2xDic6, S3xC2xC4, D4:2S3, C22xDic3, C2xC3:D4, C6xD4, C6xQ8, D4.7D4, C2.Dic12, D6:C8, D4:Dic3, C2xC3:Q16, D6:3Q8, C6xSD16, C2xD4:2S3, Dic6.16D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C4oD8, C8.C22, S3xD4, C2xC3:D4, D4.7D4, D4.D6, Q8.7D6, C23:2D6, Dic6.16D4

Smallest permutation representation of Dic6.16D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 89 7 95)(2 88 8 94)(3 87 9 93)(4 86 10 92)(5 85 11 91)(6 96 12 90)(13 44 19 38)(14 43 20 37)(15 42 21 48)(16 41 22 47)(17 40 23 46)(18 39 24 45)(25 60 31 54)(26 59 32 53)(27 58 33 52)(28 57 34 51)(29 56 35 50)(30 55 36 49)(61 75 67 81)(62 74 68 80)(63 73 69 79)(64 84 70 78)(65 83 71 77)(66 82 72 76)
(1 64 50 14)(2 63 51 13)(3 62 52 24)(4 61 53 23)(5 72 54 22)(6 71 55 21)(7 70 56 20)(8 69 57 19)(9 68 58 18)(10 67 59 17)(11 66 60 16)(12 65 49 15)(25 38 85 79)(26 37 86 78)(27 48 87 77)(28 47 88 76)(29 46 89 75)(30 45 90 74)(31 44 91 73)(32 43 92 84)(33 42 93 83)(34 41 94 82)(35 40 95 81)(36 39 96 80)
(1 56)(2 49)(3 54)(4 59)(5 52)(6 57)(7 50)(8 55)(9 60)(10 53)(11 58)(12 51)(13 21)(15 19)(16 24)(18 22)(25 93)(26 86)(27 91)(28 96)(29 89)(30 94)(31 87)(32 92)(33 85)(34 90)(35 95)(36 88)(37 43)(38 48)(39 41)(40 46)(42 44)(45 47)(62 66)(63 71)(65 69)(68 72)(73 83)(74 76)(75 81)(77 79)(78 84)(80 82)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,89,7,95)(2,88,8,94)(3,87,9,93)(4,86,10,92)(5,85,11,91)(6,96,12,90)(13,44,19,38)(14,43,20,37)(15,42,21,48)(16,41,22,47)(17,40,23,46)(18,39,24,45)(25,60,31,54)(26,59,32,53)(27,58,33,52)(28,57,34,51)(29,56,35,50)(30,55,36,49)(61,75,67,81)(62,74,68,80)(63,73,69,79)(64,84,70,78)(65,83,71,77)(66,82,72,76), (1,64,50,14)(2,63,51,13)(3,62,52,24)(4,61,53,23)(5,72,54,22)(6,71,55,21)(7,70,56,20)(8,69,57,19)(9,68,58,18)(10,67,59,17)(11,66,60,16)(12,65,49,15)(25,38,85,79)(26,37,86,78)(27,48,87,77)(28,47,88,76)(29,46,89,75)(30,45,90,74)(31,44,91,73)(32,43,92,84)(33,42,93,83)(34,41,94,82)(35,40,95,81)(36,39,96,80), (1,56)(2,49)(3,54)(4,59)(5,52)(6,57)(7,50)(8,55)(9,60)(10,53)(11,58)(12,51)(13,21)(15,19)(16,24)(18,22)(25,93)(26,86)(27,91)(28,96)(29,89)(30,94)(31,87)(32,92)(33,85)(34,90)(35,95)(36,88)(37,43)(38,48)(39,41)(40,46)(42,44)(45,47)(62,66)(63,71)(65,69)(68,72)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,89,7,95)(2,88,8,94)(3,87,9,93)(4,86,10,92)(5,85,11,91)(6,96,12,90)(13,44,19,38)(14,43,20,37)(15,42,21,48)(16,41,22,47)(17,40,23,46)(18,39,24,45)(25,60,31,54)(26,59,32,53)(27,58,33,52)(28,57,34,51)(29,56,35,50)(30,55,36,49)(61,75,67,81)(62,74,68,80)(63,73,69,79)(64,84,70,78)(65,83,71,77)(66,82,72,76), (1,64,50,14)(2,63,51,13)(3,62,52,24)(4,61,53,23)(5,72,54,22)(6,71,55,21)(7,70,56,20)(8,69,57,19)(9,68,58,18)(10,67,59,17)(11,66,60,16)(12,65,49,15)(25,38,85,79)(26,37,86,78)(27,48,87,77)(28,47,88,76)(29,46,89,75)(30,45,90,74)(31,44,91,73)(32,43,92,84)(33,42,93,83)(34,41,94,82)(35,40,95,81)(36,39,96,80), (1,56)(2,49)(3,54)(4,59)(5,52)(6,57)(7,50)(8,55)(9,60)(10,53)(11,58)(12,51)(13,21)(15,19)(16,24)(18,22)(25,93)(26,86)(27,91)(28,96)(29,89)(30,94)(31,87)(32,92)(33,85)(34,90)(35,95)(36,88)(37,43)(38,48)(39,41)(40,46)(42,44)(45,47)(62,66)(63,71)(65,69)(68,72)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,89,7,95),(2,88,8,94),(3,87,9,93),(4,86,10,92),(5,85,11,91),(6,96,12,90),(13,44,19,38),(14,43,20,37),(15,42,21,48),(16,41,22,47),(17,40,23,46),(18,39,24,45),(25,60,31,54),(26,59,32,53),(27,58,33,52),(28,57,34,51),(29,56,35,50),(30,55,36,49),(61,75,67,81),(62,74,68,80),(63,73,69,79),(64,84,70,78),(65,83,71,77),(66,82,72,76)], [(1,64,50,14),(2,63,51,13),(3,62,52,24),(4,61,53,23),(5,72,54,22),(6,71,55,21),(7,70,56,20),(8,69,57,19),(9,68,58,18),(10,67,59,17),(11,66,60,16),(12,65,49,15),(25,38,85,79),(26,37,86,78),(27,48,87,77),(28,47,88,76),(29,46,89,75),(30,45,90,74),(31,44,91,73),(32,43,92,84),(33,42,93,83),(34,41,94,82),(35,40,95,81),(36,39,96,80)], [(1,56),(2,49),(3,54),(4,59),(5,52),(6,57),(7,50),(8,55),(9,60),(10,53),(11,58),(12,51),(13,21),(15,19),(16,24),(18,22),(25,93),(26,86),(27,91),(28,96),(29,89),(30,94),(31,87),(32,92),(33,85),(34,90),(35,95),(36,88),(37,43),(38,48),(39,41),(40,46),(42,44),(45,47),(62,66),(63,71),(65,69),(68,72),(73,83),(74,76),(75,81),(77,79),(78,84),(80,82)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222223444444446666688881212121224242424
size111144122226681212242228844121244884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6C3:D4C4oD8C8.C22S3xD4S3xD4D4.D6Q8.7D6
kernelDic6.16D4C2.Dic12D6:C8D4:Dic3C2xC3:Q16D6:3Q8C6xSD16C2xD4:2S3C2xSD16Dic6C2xDic3C3xD4C22xS3C2xC8C2xD4C2xQ8D4C6C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of Dic6.16D4 in GL4(F73) generated by

46000
42700
00072
0011
,
144300
95900
0010
007272
,
57300
611600
003060
003043
,
72000
38100
00720
0011
G:=sub<GL(4,GF(73))| [46,4,0,0,0,27,0,0,0,0,0,1,0,0,72,1],[14,9,0,0,43,59,0,0,0,0,1,72,0,0,0,72],[57,61,0,0,3,16,0,0,0,0,30,30,0,0,60,43],[72,38,0,0,0,1,0,0,0,0,72,1,0,0,0,1] >;

Dic6.16D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6._{16}D_4
% in TeX

G:=Group("Dic6.16D4");
// GroupNames label

G:=SmallGroup(192,732);
// by ID

G=gap.SmallGroup(192,732);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,254,219,184,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^9*b,d*b*d=a^6*b,d*c*d=a^6*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<