Copied to
clipboard

G = C249D4order 192 = 26·3

9th semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C249D4, C3⋊C810D4, C86(C3⋊D4), C35(C83D4), C24⋊C46C2, C4.26(S3×D4), (C2×C8).91D6, (C2×D24)⋊25C2, C123D46C2, (C6×SD16)⋊4C2, (C2×SD16)⋊2S3, (C2×D4).77D6, (C2×Q8).82D6, C12.179(C2×D4), C12.23D45C2, C6.32(C41D4), C2.31(Q83D6), C6.81(C8⋊C22), (C2×Dic3).74D4, C22.273(S3×D4), (C6×Q8).82C22, C2.23(C123D4), (C2×C12).453C23, (C2×C24).116C22, (C6×D4).102C22, (C2×D12).123C22, (C4×Dic3).52C22, (C2×D4⋊S3)⋊21C2, C4.10(C2×C3⋊D4), (C2×C6).365(C2×D4), (C2×Q82S3)⋊19C2, (C2×C3⋊C8).161C22, (C2×C4).542(C22×S3), SmallGroup(192,735)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C249D4
C1C3C6C2×C6C2×C12C2×D12C2×D24 — C249D4
C3C6C2×C12 — C249D4
C1C22C2×C4C2×SD16

Generators and relations for C249D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 536 in 144 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C2×C8, C2×C8, D8, SD16, C2×D4, C2×D4, C2×Q8, C3⋊C8, C24, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C8⋊C4, C4.4D4, C41D4, C2×D8, C2×SD16, C2×SD16, D24, C2×C3⋊C8, C4×Dic3, D6⋊C4, D4⋊S3, Q82S3, C2×C24, C3×SD16, C2×D12, C2×C3⋊D4, C6×D4, C6×Q8, C83D4, C24⋊C4, C2×D24, C2×D4⋊S3, C123D4, C2×Q82S3, C12.23D4, C6×SD16, C249D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C41D4, C8⋊C22, S3×D4, C2×C3⋊D4, C83D4, Q83D6, C123D4, C249D4

Character table of C249D4

 class 12A2B2C2D2E2F34A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111182424222812122228844121244884444
ρ1111111111111111111111111111111    trivial
ρ21111-1-1-1111-111111-1-1111111-1-11111    linear of order 2
ρ31111-111111-1-1-1111-1-111-1-111-1-11111    linear of order 2
ρ411111-1-11111-1-11111111-1-111111111    linear of order 2
ρ511111-11111-11111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ61111-11-1111111111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ71111-1-111111-1-1111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ8111111-1111-1-1-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ92-2-220002-22000-2-22002-2002-2002-2-22    orthogonal lifted from D4
ρ1022220002-2-20-22222000000-2-2000000    orthogonal lifted from D4
ρ112222-200-122-200-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ122222200-122-200-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ132-2-220002-22000-2-2200-22002-200-222-2    orthogonal lifted from D4
ρ142222200-122200-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ152-2-2200022-2000-2-2200002-2-22000000    orthogonal lifted from D4
ρ162222-200-122200-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ172-2-2200022-2000-2-220000-22-22000000    orthogonal lifted from D4
ρ1822220002-2-202-2222000000-2-2000000    orthogonal lifted from D4
ρ192-2-22000-1-2200011-1-3--32-200-11--3-3-111-1    complex lifted from C3⋊D4
ρ202-2-22000-1-2200011-1-3--3-2200-11-3--31-1-11    complex lifted from C3⋊D4
ρ212-2-22000-1-2200011-1--3-3-2200-11--3-31-1-11    complex lifted from C3⋊D4
ρ222-2-22000-1-2200011-1--3-32-200-11-3--3-111-1    complex lifted from C3⋊D4
ρ234-44-4000400000-44-400000000000000    orthogonal lifted from C8⋊C22
ρ244444000-2-4-4000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ254-4-44000-24-400022-20000002-2000000    orthogonal lifted from S3×D4
ρ2644-4-40004000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ2744-4-4000-200000-222000000000066-6-6    orthogonal lifted from Q83D6
ρ284-44-4000-2000002-220000000000-66-66    orthogonal lifted from Q83D6
ρ294-44-4000-2000002-2200000000006-66-6    orthogonal lifted from Q83D6
ρ3044-4-4000-200000-2220000000000-6-666    orthogonal lifted from Q83D6

Smallest permutation representation of C249D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 68 47 86)(2 49 48 91)(3 54 25 96)(4 59 26 77)(5 64 27 82)(6 69 28 87)(7 50 29 92)(8 55 30 73)(9 60 31 78)(10 65 32 83)(11 70 33 88)(12 51 34 93)(13 56 35 74)(14 61 36 79)(15 66 37 84)(16 71 38 89)(17 52 39 94)(18 57 40 75)(19 62 41 80)(20 67 42 85)(21 72 43 90)(22 53 44 95)(23 58 45 76)(24 63 46 81)
(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 36)(46 48)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 96)(59 95)(60 94)(61 93)(62 92)(63 91)(64 90)(65 89)(66 88)(67 87)(68 86)(69 85)(70 84)(71 83)(72 82)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,68,47,86)(2,49,48,91)(3,54,25,96)(4,59,26,77)(5,64,27,82)(6,69,28,87)(7,50,29,92)(8,55,30,73)(9,60,31,78)(10,65,32,83)(11,70,33,88)(12,51,34,93)(13,56,35,74)(14,61,36,79)(15,66,37,84)(16,71,38,89)(17,52,39,94)(18,57,40,75)(19,62,41,80)(20,67,42,85)(21,72,43,90)(22,53,44,95)(23,58,45,76)(24,63,46,81), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(46,48)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,96)(59,95)(60,94)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,84)(71,83)(72,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,68,47,86)(2,49,48,91)(3,54,25,96)(4,59,26,77)(5,64,27,82)(6,69,28,87)(7,50,29,92)(8,55,30,73)(9,60,31,78)(10,65,32,83)(11,70,33,88)(12,51,34,93)(13,56,35,74)(14,61,36,79)(15,66,37,84)(16,71,38,89)(17,52,39,94)(18,57,40,75)(19,62,41,80)(20,67,42,85)(21,72,43,90)(22,53,44,95)(23,58,45,76)(24,63,46,81), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(46,48)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,96)(59,95)(60,94)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,84)(71,83)(72,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,68,47,86),(2,49,48,91),(3,54,25,96),(4,59,26,77),(5,64,27,82),(6,69,28,87),(7,50,29,92),(8,55,30,73),(9,60,31,78),(10,65,32,83),(11,70,33,88),(12,51,34,93),(13,56,35,74),(14,61,36,79),(15,66,37,84),(16,71,38,89),(17,52,39,94),(18,57,40,75),(19,62,41,80),(20,67,42,85),(21,72,43,90),(22,53,44,95),(23,58,45,76),(24,63,46,81)], [(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,36),(46,48),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,96),(59,95),(60,94),(61,93),(62,92),(63,91),(64,90),(65,89),(66,88),(67,87),(68,86),(69,85),(70,84),(71,83),(72,82)]])

Matrix representation of C249D4 in GL6(𝔽73)

100000
010000
0034393439
0034683468
0039343439
003953468
,
17700000
48560000
00696570
006946666
006606965
0077694
,
100000
60720000
001000
00727200
0000720
000011

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,34,39,39,0,0,39,68,34,5,0,0,34,34,34,34,0,0,39,68,39,68],[17,48,0,0,0,0,70,56,0,0,0,0,0,0,69,69,66,7,0,0,65,4,0,7,0,0,7,66,69,69,0,0,0,66,65,4],[1,60,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1] >;

C249D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_9D_4
% in TeX

G:=Group("C24:9D4");
// GroupNames label

G:=SmallGroup(192,735);
// by ID

G=gap.SmallGroup(192,735);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,219,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C249D4 in TeX

׿
×
𝔽