Extensions 1→N→G→Q→1 with N=C6xD4 and Q=C4

Direct product G=NxQ with N=C6xD4 and Q=C4
dρLabelID
D4xC2xC1296D4xC2xC12192,1404

Semidirect products G=N:Q with N=C6xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C6xD4):1C4 = (C6xD4):C4φ: C4/C1C4 ⊆ Out C6xD448(C6xD4):1C4192,96
(C6xD4):2C4 = C42:5Dic3φ: C4/C1C4 ⊆ Out C6xD4244(C6xD4):2C4192,104
(C6xD4):3C4 = C3xC22.SD16φ: C4/C1C4 ⊆ Out C6xD448(C6xD4):3C4192,133
(C6xD4):4C4 = C3xC42:C4φ: C4/C1C4 ⊆ Out C6xD4244(C6xD4):4C4192,159
(C6xD4):5C4 = C2xD4:Dic3φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):5C4192,773
(C6xD4):6C4 = (C6xD4):6C4φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):6C4192,774
(C6xD4):7C4 = C24.30D6φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):7C4192,780
(C6xD4):8C4 = C2xQ8:3Dic3φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):8C4192,794
(C6xD4):9C4 = (C6xD4):9C4φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4):9C4192,795
(C6xD4):10C4 = (C6xD4):10C4φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4):10C4192,799
(C6xD4):11C4 = C2xD4xDic3φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):11C4192,1354
(C6xD4):12C4 = C24.49D6φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):12C4192,1357
(C6xD4):13C4 = C2xC23.7D6φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):13C4192,778
(C6xD4):14C4 = C24.29D6φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):14C4192,779
(C6xD4):15C4 = C3xC23.23D4φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):15C4192,819
(C6xD4):16C4 = C3xC24.3C22φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):16C4192,823
(C6xD4):17C4 = C6xC23:C4φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):17C4192,842
(C6xD4):18C4 = C3xC23.C23φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4):18C4192,843
(C6xD4):19C4 = C6xD4:C4φ: C4/C2C2 ⊆ Out C6xD496(C6xD4):19C4192,847
(C6xD4):20C4 = C3xC23.37D4φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):20C4192,851
(C6xD4):21C4 = C6xC4wrC2φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):21C4192,853
(C6xD4):22C4 = C3xC42:C22φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4):22C4192,854
(C6xD4):23C4 = C3xC22.11C24φ: C4/C2C2 ⊆ Out C6xD448(C6xD4):23C4192,1407

Non-split extensions G=N.Q with N=C6xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C6xD4).1C4 = C42.7D6φ: C4/C1C4 ⊆ Out C6xD496(C6xD4).1C4192,99
(C6xD4).2C4 = C42.Dic3φ: C4/C1C4 ⊆ Out C6xD4484(C6xD4).2C4192,101
(C6xD4).3C4 = C12.9D8φ: C4/C1C4 ⊆ Out C6xD496(C6xD4).3C4192,103
(C6xD4).4C4 = C3xC42.C22φ: C4/C1C4 ⊆ Out C6xD496(C6xD4).4C4192,135
(C6xD4).5C4 = C3xC4.D8φ: C4/C1C4 ⊆ Out C6xD496(C6xD4).5C4192,137
(C6xD4).6C4 = C3xC42.C4φ: C4/C1C4 ⊆ Out C6xD4484(C6xD4).6C4192,161
(C6xD4).7C4 = C12.57D8φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).7C4192,93
(C6xD4).8C4 = D4xC3:C8φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).8C4192,569
(C6xD4).9C4 = C12:3M4(2)φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).9C4192,571
(C6xD4).10C4 = C2xC12.D4φ: C4/C2C2 ⊆ Out C6xD448(C6xD4).10C4192,775
(C6xD4).11C4 = (C6xD4).11C4φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).11C4192,793
(C6xD4).12C4 = C2xD4.Dic3φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).12C4192,1377
(C6xD4).13C4 = C12.76C24φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4).13C4192,1378
(C6xD4).14C4 = C3xD4:C8φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).14C4192,131
(C6xD4).15C4 = C42.47D6φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).15C4192,570
(C6xD4).16C4 = (C6xD4).16C4φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4).16C4192,796
(C6xD4).17C4 = C3x(C22xC8):C2φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).17C4192,841
(C6xD4).18C4 = C6xC4.D4φ: C4/C2C2 ⊆ Out C6xD448(C6xD4).18C4192,844
(C6xD4).19C4 = C3xM4(2).8C22φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4).19C4192,846
(C6xD4).20C4 = C3xC8:9D4φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).20C4192,868
(C6xD4).21C4 = C3xC8:6D4φ: C4/C2C2 ⊆ Out C6xD496(C6xD4).21C4192,869
(C6xD4).22C4 = C3xQ8oM4(2)φ: C4/C2C2 ⊆ Out C6xD4484(C6xD4).22C4192,1457
(C6xD4).23C4 = D4xC24φ: trivial image96(C6xD4).23C4192,867
(C6xD4).24C4 = C6xC8oD4φ: trivial image96(C6xD4).24C4192,1456

׿
x
:
Z
F
o
wr
Q
<