extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C48)⋊1C2 = D6⋊C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):1C2 | 192,66 |
(C2×C48)⋊2C2 = D12.C8 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):2C2 | 192,67 |
(C2×C48)⋊3C2 = C2.D48 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):3C2 | 192,68 |
(C2×C48)⋊4C2 = D24.1C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):4C2 | 192,69 |
(C2×C48)⋊5C2 = C3×C22⋊C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):5C2 | 192,154 |
(C2×C48)⋊6C2 = C3×D4.C8 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):6C2 | 192,156 |
(C2×C48)⋊7C2 = C3×C2.D16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):7C2 | 192,163 |
(C2×C48)⋊8C2 = C3×D8.C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):8C2 | 192,165 |
(C2×C48)⋊9C2 = C2×D48 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):9C2 | 192,461 |
(C2×C48)⋊10C2 = D48⋊7C2 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):10C2 | 192,463 |
(C2×C48)⋊11C2 = C2×C48⋊C2 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):11C2 | 192,462 |
(C2×C48)⋊12C2 = C6×D16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):12C2 | 192,938 |
(C2×C48)⋊13C2 = C3×C4○D16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):13C2 | 192,941 |
(C2×C48)⋊14C2 = C6×SD32 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):14C2 | 192,939 |
(C2×C48)⋊15C2 = S3×C2×C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):15C2 | 192,458 |
(C2×C48)⋊16C2 = C2×D6.C8 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):16C2 | 192,459 |
(C2×C48)⋊17C2 = D12.4C8 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):17C2 | 192,460 |
(C2×C48)⋊18C2 = C6×M5(2) | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | | (C2xC48):18C2 | 192,936 |
(C2×C48)⋊19C2 = C3×D4○C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48):19C2 | 192,937 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C48).1C2 = Dic3⋊C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).1C2 | 192,60 |
(C2×C48).2C2 = C2.Dic24 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).2C2 | 192,62 |
(C2×C48).3C2 = C3×C2.Q32 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).3C2 | 192,164 |
(C2×C48).4C2 = C3×C4⋊C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).4C2 | 192,169 |
(C2×C48).5C2 = C48⋊5C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).5C2 | 192,63 |
(C2×C48).6C2 = C2×Dic24 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).6C2 | 192,464 |
(C2×C48).7C2 = C48.C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48).7C2 | 192,65 |
(C2×C48).8C2 = C48⋊6C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).8C2 | 192,64 |
(C2×C48).9C2 = C3×C16⋊3C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).9C2 | 192,172 |
(C2×C48).10C2 = C6×Q32 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).10C2 | 192,940 |
(C2×C48).11C2 = C3×C8.4Q8 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48).11C2 | 192,174 |
(C2×C48).12C2 = C3×C16⋊4C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).12C2 | 192,173 |
(C2×C48).13C2 = C2×C3⋊C32 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).13C2 | 192,57 |
(C2×C48).14C2 = C3⋊M6(2) | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48).14C2 | 192,58 |
(C2×C48).15C2 = Dic3×C16 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).15C2 | 192,59 |
(C2×C48).16C2 = C48⋊10C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).16C2 | 192,61 |
(C2×C48).17C2 = C3×C16⋊5C4 | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 192 | | (C2xC48).17C2 | 192,152 |
(C2×C48).18C2 = C3×M6(2) | φ: C2/C1 → C2 ⊆ Aut C2×C48 | 96 | 2 | (C2xC48).18C2 | 192,176 |