Extensions 1→N→G→Q→1 with N=C2xC48 and Q=C2

Direct product G=NxQ with N=C2xC48 and Q=C2
dρLabelID
C22xC48192C2^2xC48192,935

Semidirect products G=N:Q with N=C2xC48 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC48):1C2 = D6:C16φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):1C2192,66
(C2xC48):2C2 = D12.C8φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):2C2192,67
(C2xC48):3C2 = C2.D48φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):3C2192,68
(C2xC48):4C2 = D24.1C4φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):4C2192,69
(C2xC48):5C2 = C3xC22:C16φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):5C2192,154
(C2xC48):6C2 = C3xD4.C8φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):6C2192,156
(C2xC48):7C2 = C3xC2.D16φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):7C2192,163
(C2xC48):8C2 = C3xD8.C4φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):8C2192,165
(C2xC48):9C2 = C2xD48φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):9C2192,461
(C2xC48):10C2 = D48:7C2φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):10C2192,463
(C2xC48):11C2 = C2xC48:C2φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):11C2192,462
(C2xC48):12C2 = C6xD16φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):12C2192,938
(C2xC48):13C2 = C3xC4oD16φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):13C2192,941
(C2xC48):14C2 = C6xSD32φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):14C2192,939
(C2xC48):15C2 = S3xC2xC16φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):15C2192,458
(C2xC48):16C2 = C2xD6.C8φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):16C2192,459
(C2xC48):17C2 = D12.4C8φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):17C2192,460
(C2xC48):18C2 = C6xM5(2)φ: C2/C1C2 ⊆ Aut C2xC4896(C2xC48):18C2192,936
(C2xC48):19C2 = C3xD4oC16φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48):19C2192,937

Non-split extensions G=N.Q with N=C2xC48 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC48).1C2 = Dic3:C16φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).1C2192,60
(C2xC48).2C2 = C2.Dic24φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).2C2192,62
(C2xC48).3C2 = C3xC2.Q32φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).3C2192,164
(C2xC48).4C2 = C3xC4:C16φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).4C2192,169
(C2xC48).5C2 = C48:5C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).5C2192,63
(C2xC48).6C2 = C2xDic24φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).6C2192,464
(C2xC48).7C2 = C48.C4φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48).7C2192,65
(C2xC48).8C2 = C48:6C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).8C2192,64
(C2xC48).9C2 = C3xC16:3C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).9C2192,172
(C2xC48).10C2 = C6xQ32φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).10C2192,940
(C2xC48).11C2 = C3xC8.4Q8φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48).11C2192,174
(C2xC48).12C2 = C3xC16:4C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).12C2192,173
(C2xC48).13C2 = C2xC3:C32φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).13C2192,57
(C2xC48).14C2 = C3:M6(2)φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48).14C2192,58
(C2xC48).15C2 = Dic3xC16φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).15C2192,59
(C2xC48).16C2 = C48:10C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).16C2192,61
(C2xC48).17C2 = C3xC16:5C4φ: C2/C1C2 ⊆ Aut C2xC48192(C2xC48).17C2192,152
(C2xC48).18C2 = C3xM6(2)φ: C2/C1C2 ⊆ Aut C2xC48962(C2xC48).18C2192,176

׿
x
:
Z
F
o
wr
Q
<