Copied to
clipboard

G = D487C2order 192 = 26·3

The semidirect product of D48 and C2 acting through Inn(D48)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D487C2, C4.20D24, C8.13D12, C24.63D4, C16.16D6, C12.38D8, Dic247C2, C22.1D24, C24.57C23, C48.18C22, D24.7C22, Dic12.7C22, (C2×C16)⋊6S3, (C2×C48)⋊10C2, C4○D241C2, C31(C4○D16), C48⋊C27C2, C6.11(C2×D8), (C2×C6).20D8, C2.13(C2×D24), (C2×C4).85D12, C4.38(C2×D12), (C2×C8).313D6, C12.281(C2×D4), (C2×C12).395D4, C8.47(C22×S3), (C2×C24).385C22, SmallGroup(192,463)

Series: Derived Chief Lower central Upper central

C1C24 — D487C2
C1C3C6C12C24D24C4○D24 — D487C2
C3C6C12C24 — D487C2
C1C4C2×C4C2×C8C2×C16

Generators and relations for D487C2
 G = < a,b,c | a48=b2=c2=1, bab=a-1, ac=ca, cbc=a24b >

Subgroups: 328 in 84 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C16, C2×C8, D8, SD16, Q16, C4○D4, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C16, D16, SD32, Q32, C4○D8, C48, C24⋊C2, D24, Dic12, C2×C24, C4○D12, C4○D16, D48, C48⋊C2, Dic24, C2×C48, C4○D24, D487C2
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, D12, C22×S3, C2×D8, D24, C2×D12, C4○D16, C2×D24, D487C2

Smallest permutation representation of D487C2
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(49 93)(50 92)(51 91)(52 90)(53 89)(54 88)(55 87)(56 86)(57 85)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(94 96)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 87)(13 88)(14 89)(15 90)(16 91)(17 92)(18 93)(19 94)(20 95)(21 96)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(94,96), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(94,96), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(49,93),(50,92),(51,91),(52,90),(53,89),(54,88),(55,87),(56,86),(57,85),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(94,96)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,87),(13,88),(14,89),(15,90),(16,91),(17,92),(18,93),(19,94),(20,95),(21,96),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75)]])

54 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C8A8B8C8D12A12B12C12D16A···16H24A···24H48A···48P
order1222234444466688881212121216···1624···2448···48
size112242421122424222222222222···22···22···2

54 irreducible representations

dim1111112222222222222
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D8D8D12D12D24D24C4○D16D487C2
kernelD487C2D48C48⋊C2Dic24C2×C48C4○D24C2×C16C24C2×C12C16C2×C8C12C2×C6C8C2×C4C4C22C3C1
# reps11211211121222244816

Matrix representation of D487C2 in GL4(𝔽7) generated by

2550
1405
6140
6023
,
0241
4631
3301
2411
,
4052
5003
2543
5516
G:=sub<GL(4,GF(7))| [2,1,6,6,5,4,1,0,5,0,4,2,0,5,0,3],[0,4,3,2,2,6,3,4,4,3,0,1,1,1,1,1],[4,5,2,5,0,0,5,5,5,0,4,1,2,3,3,6] >;

D487C2 in GAP, Magma, Sage, TeX

D_{48}\rtimes_7C_2
% in TeX

G:=Group("D48:7C2");
// GroupNames label

G:=SmallGroup(192,463);
// by ID

G=gap.SmallGroup(192,463);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,142,675,192,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^48=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^24*b>;
// generators/relations

׿
×
𝔽