Extensions 1→N→G→Q→1 with N=C3×D16 and Q=C2

Direct product G=N×Q with N=C3×D16 and Q=C2
dρLabelID
C6×D1696C6xD16192,938

Semidirect products G=N:Q with N=C3×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D16)⋊1C2 = C3⋊D32φ: C2/C1C2 ⊆ Out C3×D16964+(C3xD16):1C2192,78
(C3×D16)⋊2C2 = S3×D16φ: C2/C1C2 ⊆ Out C3×D16484+(C3xD16):2C2192,469
(C3×D16)⋊3C2 = D163S3φ: C2/C1C2 ⊆ Out C3×D16964-(C3xD16):3C2192,471
(C3×D16)⋊4C2 = D8⋊D6φ: C2/C1C2 ⊆ Out C3×D16484(C3xD16):4C2192,470
(C3×D16)⋊5C2 = C3×D32φ: C2/C1C2 ⊆ Out C3×D16962(C3xD16):5C2192,177
(C3×D16)⋊6C2 = C3×C16⋊C22φ: C2/C1C2 ⊆ Out C3×D16484(C3xD16):6C2192,942
(C3×D16)⋊7C2 = C3×C4○D16φ: trivial image962(C3xD16):7C2192,941

Non-split extensions G=N.Q with N=C3×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D16).1C2 = D16.S3φ: C2/C1C2 ⊆ Out C3×D16964-(C3xD16).1C2192,79
(C3×D16).2C2 = C3×SD64φ: C2/C1C2 ⊆ Out C3×D16962(C3xD16).2C2192,178

׿
×
𝔽