metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8⋊2D6, C16⋊2D6, D16⋊2S3, D6.6D8, C48⋊4C22, Dic3.8D8, C24.14C23, D24.1C22, Dic12⋊4C22, C3⋊C8.2D4, (S3×D8)⋊4C2, C4.2(S3×D4), (C3×D16)⋊4C2, C3⋊D16⋊2C2, C3⋊C16⋊1C22, D8.S3⋊1C2, D6.C8⋊3C2, (C4×S3).7D4, C48⋊C2⋊3C2, C2.17(S3×D8), C12.8(C2×D4), C6.33(C2×D8), D8⋊3S3⋊3C2, C3⋊2(C16⋊C22), (C3×D8)⋊6C22, (S3×C8).3C22, C8.20(C22×S3), SmallGroup(192,470)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8⋊D6
G = < a,b,c,d | a8=b2=c6=d2=1, bab=cac-1=dad=a-1, cbc-1=a5b, dbd=ab, dcd=c-1 >
Subgroups: 380 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, M5(2), D16, D16, SD32, C2×D8, C4○D8, C3⋊C16, C48, S3×C8, D24, Dic12, D4⋊S3, D4.S3, C3×D8, S3×D4, D4⋊2S3, C16⋊C22, D6.C8, C48⋊C2, C3⋊D16, D8.S3, C3×D16, S3×D8, D8⋊3S3, D8⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, C2×D8, S3×D4, C16⋊C22, S3×D8, D8⋊D6
Character table of D8⋊D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 12 | 16A | 16B | 16C | 16D | 24A | 24B | 48A | 48B | 48C | 48D | |
size | 1 | 1 | 6 | 8 | 8 | 24 | 2 | 2 | 6 | 24 | 2 | 16 | 16 | 2 | 2 | 12 | 4 | 4 | 4 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -2 | -2 | 0 | -1 | 2 | 0 | 0 | -1 | 1 | 1 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 0 | -2 | 2 | 0 | -1 | 2 | 0 | 0 | -1 | 1 | -1 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 2 | -2 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | 1 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | -2 | 0 | 0 | -4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ22 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from S3×D8 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from S3×D8 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 2ζ167ζ3+ζ167-2ζ16ζ3-ζ16 | -2ζ1613ζ32-ζ1613+2ζ1611ζ32+ζ1611 | -2ζ167ζ3-ζ167+2ζ16ζ3+ζ16 | -2ζ165ζ32-ζ165+2ζ163ζ32+ζ163 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -2ζ1613ζ32-ζ1613+2ζ1611ζ32+ζ1611 | -2ζ167ζ3-ζ167+2ζ16ζ3+ζ16 | -2ζ165ζ32-ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ3+ζ167-2ζ16ζ3-ζ16 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -2ζ167ζ3-ζ167+2ζ16ζ3+ζ16 | -2ζ165ζ32-ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ3+ζ167-2ζ16ζ3-ζ16 | -2ζ1613ζ32-ζ1613+2ζ1611ζ32+ζ1611 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -2ζ165ζ32-ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ3+ζ167-2ζ16ζ3-ζ16 | -2ζ1613ζ32-ζ1613+2ζ1611ζ32+ζ1611 | -2ζ167ζ3-ζ167+2ζ16ζ3+ζ16 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 10)(2 9)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 32)(33 44)(34 43)(35 42)(36 41)(37 48)(38 47)(39 46)(40 45)
(1 36 25)(2 35 26 8 37 32)(3 34 27 7 38 31)(4 33 28 6 39 30)(5 40 29)(9 45 22 14 48 19)(10 44 23 13 41 18)(11 43 24 12 42 17)(15 47 20 16 46 21)
(1 25)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(16 24)(33 39)(34 38)(35 37)(41 48)(42 47)(43 46)(44 45)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)(33,44)(34,43)(35,42)(36,41)(37,48)(38,47)(39,46)(40,45), (1,36,25)(2,35,26,8,37,32)(3,34,27,7,38,31)(4,33,28,6,39,30)(5,40,29)(9,45,22,14,48,19)(10,44,23,13,41,18)(11,43,24,12,42,17)(15,47,20,16,46,21), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(16,24)(33,39)(34,38)(35,37)(41,48)(42,47)(43,46)(44,45)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)(33,44)(34,43)(35,42)(36,41)(37,48)(38,47)(39,46)(40,45), (1,36,25)(2,35,26,8,37,32)(3,34,27,7,38,31)(4,33,28,6,39,30)(5,40,29)(9,45,22,14,48,19)(10,44,23,13,41,18)(11,43,24,12,42,17)(15,47,20,16,46,21), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(16,24)(33,39)(34,38)(35,37)(41,48)(42,47)(43,46)(44,45) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,10),(2,9),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,32),(33,44),(34,43),(35,42),(36,41),(37,48),(38,47),(39,46),(40,45)], [(1,36,25),(2,35,26,8,37,32),(3,34,27,7,38,31),(4,33,28,6,39,30),(5,40,29),(9,45,22,14,48,19),(10,44,23,13,41,18),(11,43,24,12,42,17),(15,47,20,16,46,21)], [(1,25),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(16,24),(33,39),(34,38),(35,37),(41,48),(42,47),(43,46),(44,45)]])
Matrix representation of D8⋊D6 ►in GL4(𝔽97) generated by
7 | 0 | 90 | 0 |
0 | 7 | 0 | 90 |
7 | 0 | 7 | 0 |
0 | 7 | 0 | 7 |
96 | 95 | 15 | 30 |
2 | 1 | 67 | 82 |
15 | 30 | 1 | 2 |
67 | 82 | 95 | 96 |
96 | 96 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 96 | 0 |
96 | 96 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 96 |
G:=sub<GL(4,GF(97))| [7,0,7,0,0,7,0,7,90,0,7,0,0,90,0,7],[96,2,15,67,95,1,30,82,15,67,1,95,30,82,2,96],[96,1,0,0,96,0,0,0,0,0,1,96,0,0,1,0],[96,0,0,0,96,1,0,0,0,0,1,0,0,0,1,96] >;
D8⋊D6 in GAP, Magma, Sage, TeX
D_8\rtimes D_6
% in TeX
G:=Group("D8:D6");
// GroupNames label
G:=SmallGroup(192,470);
// by ID
G=gap.SmallGroup(192,470);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,135,346,185,192,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^6=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^5*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export