direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×D16, D8⋊1D6, C16⋊4D6, D48⋊4C2, C48⋊2C22, D6.12D8, D24⋊5C22, Dic3.3D8, C24.13C23, C3⋊2(C2×D16), (S3×D8)⋊3C2, C3⋊C8.11D4, C4.1(S3×D4), (S3×C16)⋊1C2, (C3×D16)⋊2C2, C3⋊D16⋊1C2, C3⋊C16⋊5C22, C12.7(C2×D4), C6.32(C2×D8), C2.16(S3×D8), (C4×S3).18D4, (C3×D8)⋊5C22, (S3×C8).9C22, C8.19(C22×S3), SmallGroup(192,469)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D16
G = < a,b,c,d | a3=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 476 in 98 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, D4, C23, Dic3, C12, D6, D6, C2×C6, C16, C16, C2×C8, D8, D8, C2×D4, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C2×C16, D16, D16, C2×D8, C3⋊C16, C48, S3×C8, D24, D4⋊S3, C3×D8, S3×D4, C2×D16, S3×C16, D48, C3⋊D16, C3×D16, S3×D8, S3×D16
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, D16, C2×D8, S3×D4, C2×D16, S3×D8, S3×D16
(1 37 21)(2 38 22)(3 39 23)(4 40 24)(5 41 25)(6 42 26)(7 43 27)(8 44 28)(9 45 29)(10 46 30)(11 47 31)(12 48 32)(13 33 17)(14 34 18)(15 35 19)(16 36 20)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 33)(26 34)(27 35)(28 36)(29 37)(30 38)(31 39)(32 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 25)(18 24)(19 23)(20 22)(26 32)(27 31)(28 30)(33 41)(34 40)(35 39)(36 38)(42 48)(43 47)(44 46)
G:=sub<Sym(48)| (1,37,21)(2,38,22)(3,39,23)(4,40,24)(5,41,25)(6,42,26)(7,43,27)(8,44,28)(9,45,29)(10,46,30)(11,47,31)(12,48,32)(13,33,17)(14,34,18)(15,35,19)(16,36,20), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,25)(18,24)(19,23)(20,22)(26,32)(27,31)(28,30)(33,41)(34,40)(35,39)(36,38)(42,48)(43,47)(44,46)>;
G:=Group( (1,37,21)(2,38,22)(3,39,23)(4,40,24)(5,41,25)(6,42,26)(7,43,27)(8,44,28)(9,45,29)(10,46,30)(11,47,31)(12,48,32)(13,33,17)(14,34,18)(15,35,19)(16,36,20), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,25)(18,24)(19,23)(20,22)(26,32)(27,31)(28,30)(33,41)(34,40)(35,39)(36,38)(42,48)(43,47)(44,46) );
G=PermutationGroup([[(1,37,21),(2,38,22),(3,39,23),(4,40,24),(5,41,25),(6,42,26),(7,43,27),(8,44,28),(9,45,29),(10,46,30),(11,47,31),(12,48,32),(13,33,17),(14,34,18),(15,35,19),(16,36,20)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,33),(26,34),(27,35),(28,36),(29,37),(30,38),(31,39),(32,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,25),(18,24),(19,23),(20,22),(26,32),(27,31),(28,30),(33,41),(34,40),(35,39),(36,38),(42,48),(43,47),(44,46)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12 | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 24A | 24B | 48A | 48B | 48C | 48D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 24 | 24 | 48 | 48 | 48 | 48 |
size | 1 | 1 | 3 | 3 | 8 | 8 | 24 | 24 | 2 | 2 | 6 | 2 | 16 | 16 | 2 | 2 | 6 | 6 | 4 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D8 | D8 | D16 | S3×D4 | S3×D8 | S3×D16 |
kernel | S3×D16 | S3×C16 | D48 | C3⋊D16 | C3×D16 | S3×D8 | D16 | C3⋊C8 | C4×S3 | C16 | D8 | Dic3 | D6 | S3 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 2 | 4 |
Matrix representation of S3×D16 ►in GL4(𝔽97) generated by
0 | 96 | 0 | 0 |
1 | 96 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 96 | 0 |
0 | 0 | 0 | 96 |
96 | 0 | 0 | 0 |
0 | 96 | 0 | 0 |
0 | 0 | 95 | 71 |
0 | 0 | 26 | 95 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 96 |
G:=sub<GL(4,GF(97))| [0,1,0,0,96,96,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,96,0,0,0,0,96],[96,0,0,0,0,96,0,0,0,0,95,26,0,0,71,95],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,96] >;
S3×D16 in GAP, Magma, Sage, TeX
S_3\times D_{16}
% in TeX
G:=Group("S3xD16");
// GroupNames label
G:=SmallGroup(192,469);
// by ID
G=gap.SmallGroup(192,469);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,135,346,185,192,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations