Copied to
clipboard

G = D16:3S3order 192 = 26·3

The semidirect product of D16 and S3 acting through Inn(D16)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D16:3S3, D6.1D8, D8.1D6, C16.8D6, Dic24:4C2, C48.6C22, C24.15C23, Dic3.12D8, Dic12.2C22, C3:C8.12D4, C4.3(S3xD4), (S3xC16):2C2, (C3xD16):3C2, C3:2(C4oD16), D8.S3:2C2, C6.34(C2xD8), C12.9(C2xD4), C2.18(S3xD8), D8:3S3:4C2, (C4xS3).19D4, C3:C16.5C22, C8.21(C22xS3), (C3xD8).1C22, (S3xC8).10C22, SmallGroup(192,471)

Series: Derived Chief Lower central Upper central

C1C24 — D16:3S3
C1C3C6C12C24S3xC8D8:3S3 — D16:3S3
C3C6C12C24 — D16:3S3
C1C2C4C8D16

Generators and relations for D16:3S3
 G = < a,b,c,d | a16=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a8b, dcd=c-1 >

Subgroups: 284 in 84 conjugacy classes, 31 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, Q8, Dic3, Dic3, C12, D6, C2xC6, C16, C16, C2xC8, D8, SD16, Q16, C4oD4, C3:C8, C24, Dic6, C4xS3, C2xDic3, C3:D4, C3xD4, C2xC16, D16, SD32, Q32, C4oD8, C3:C16, C48, S3xC8, Dic12, D4.S3, C3xD8, D4:2S3, C4oD16, S3xC16, Dic24, D8.S3, C3xD16, D8:3S3, D16:3S3
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, C4oD16, S3xD8, D16:3S3

Smallest permutation representation of D16:3S3
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 19)(20 32)(21 31)(22 30)(23 29)(24 28)(25 27)(33 35)(36 48)(37 47)(38 46)(39 45)(40 44)(41 43)(49 51)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(65 73)(66 72)(67 71)(68 70)(74 80)(75 79)(76 78)(81 85)(82 84)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 18 58)(2 19 59)(3 20 60)(4 21 61)(5 22 62)(6 23 63)(7 24 64)(8 25 49)(9 26 50)(10 27 51)(11 28 52)(12 29 53)(13 30 54)(14 31 55)(15 32 56)(16 17 57)(33 82 76)(34 83 77)(35 84 78)(36 85 79)(37 86 80)(38 87 65)(39 88 66)(40 89 67)(41 90 68)(42 91 69)(43 92 70)(44 93 71)(45 94 72)(46 95 73)(47 96 74)(48 81 75)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 94)(18 95)(19 96)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 91)(31 92)(32 93)(33 61)(34 62)(35 63)(36 64)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,19)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(33,35)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(49,51)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(65,73)(66,72)(67,71)(68,70)(74,80)(75,79)(76,78)(81,85)(82,84)(86,96)(87,95)(88,94)(89,93)(90,92), (1,18,58)(2,19,59)(3,20,60)(4,21,61)(5,22,62)(6,23,63)(7,24,64)(8,25,49)(9,26,50)(10,27,51)(11,28,52)(12,29,53)(13,30,54)(14,31,55)(15,32,56)(16,17,57)(33,82,76)(34,83,77)(35,84,78)(36,85,79)(37,86,80)(38,87,65)(39,88,66)(40,89,67)(41,90,68)(42,91,69)(43,92,70)(44,93,71)(45,94,72)(46,95,73)(47,96,74)(48,81,75), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,94)(18,95)(19,96)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,61)(34,62)(35,63)(36,64)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,19)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(33,35)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(49,51)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(65,73)(66,72)(67,71)(68,70)(74,80)(75,79)(76,78)(81,85)(82,84)(86,96)(87,95)(88,94)(89,93)(90,92), (1,18,58)(2,19,59)(3,20,60)(4,21,61)(5,22,62)(6,23,63)(7,24,64)(8,25,49)(9,26,50)(10,27,51)(11,28,52)(12,29,53)(13,30,54)(14,31,55)(15,32,56)(16,17,57)(33,82,76)(34,83,77)(35,84,78)(36,85,79)(37,86,80)(38,87,65)(39,88,66)(40,89,67)(41,90,68)(42,91,69)(43,92,70)(44,93,71)(45,94,72)(46,95,73)(47,96,74)(48,81,75), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,94)(18,95)(19,96)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,61)(34,62)(35,63)(36,64)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,19),(20,32),(21,31),(22,30),(23,29),(24,28),(25,27),(33,35),(36,48),(37,47),(38,46),(39,45),(40,44),(41,43),(49,51),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(65,73),(66,72),(67,71),(68,70),(74,80),(75,79),(76,78),(81,85),(82,84),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,18,58),(2,19,59),(3,20,60),(4,21,61),(5,22,62),(6,23,63),(7,24,64),(8,25,49),(9,26,50),(10,27,51),(11,28,52),(12,29,53),(13,30,54),(14,31,55),(15,32,56),(16,17,57),(33,82,76),(34,83,77),(35,84,78),(36,85,79),(37,86,80),(38,87,65),(39,88,66),(40,89,67),(41,90,68),(42,91,69),(43,92,70),(44,93,71),(45,94,72),(46,95,73),(47,96,74),(48,81,75)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,94),(18,95),(19,96),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,91),(31,92),(32,93),(33,61),(34,62),(35,63),(36,64),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C8A8B8C8D 12 16A16B16C16D16E16F16G16H24A24B48A48B48C48D
order122223444446668888121616161616161616242448484848
size1168822332424216162266422226666444444

33 irreducible representations

dim11111122222222444
type+++++++++++++++-
imageC1C2C2C2C2C2S3D4D4D6D6D8D8C4oD16S3xD4S3xD8D16:3S3
kernelD16:3S3S3xC16Dic24D8.S3C3xD16D8:3S3D16C3:C8C4xS3C16D8Dic3D6C3C4C2C1
# reps11121211112228124

Matrix representation of D16:3S3 in GL4(F97) generated by

1000
0100
002491
006628
,
1000
0100
0010
006496
,
969600
1000
0010
0001
,
442000
735300
002266
005075
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,24,66,0,0,91,28],[1,0,0,0,0,1,0,0,0,0,1,64,0,0,0,96],[96,1,0,0,96,0,0,0,0,0,1,0,0,0,0,1],[44,73,0,0,20,53,0,0,0,0,22,50,0,0,66,75] >;

D16:3S3 in GAP, Magma, Sage, TeX

D_{16}\rtimes_3S_3
% in TeX

G:=Group("D16:3S3");
// GroupNames label

G:=SmallGroup(192,471);
// by ID

G=gap.SmallGroup(192,471);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,758,135,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<