extension | φ:Q→Out N | d | ρ | Label | ID |
(D4xC12):1C2 = C4xD4:S3 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):1C2 | 192,572 |
(D4xC12):2C2 = C42.48D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):2C2 | 192,573 |
(D4xC12):3C2 = C12:7D8 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):3C2 | 192,574 |
(D4xC12):4C2 = D4.1D12 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):4C2 | 192,575 |
(D4xC12):5C2 = C4xD4:2S3 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):5C2 | 192,1095 |
(D4xC12):6C2 = C42.102D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):6C2 | 192,1097 |
(D4xC12):7C2 = C42.104D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):7C2 | 192,1099 |
(D4xC12):8C2 = C4xS3xD4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):8C2 | 192,1103 |
(D4xC12):9C2 = C42:13D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):9C2 | 192,1104 |
(D4xC12):10C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):10C2 | 192,1105 |
(D4xC12):11C2 = C42:14D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):11C2 | 192,1106 |
(D4xC12):12C2 = C42.228D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):12C2 | 192,1107 |
(D4xC12):13C2 = D4xD12 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):13C2 | 192,1108 |
(D4xC12):14C2 = D12:23D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):14C2 | 192,1109 |
(D4xC12):15C2 = D12:24D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):15C2 | 192,1110 |
(D4xC12):16C2 = Dic6:23D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):16C2 | 192,1111 |
(D4xC12):17C2 = Dic6:24D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):17C2 | 192,1112 |
(D4xC12):18C2 = D4:5D12 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):18C2 | 192,1113 |
(D4xC12):19C2 = D4:6D12 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):19C2 | 192,1114 |
(D4xC12):20C2 = C42:18D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):20C2 | 192,1115 |
(D4xC12):21C2 = C42.229D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):21C2 | 192,1116 |
(D4xC12):22C2 = C42.113D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):22C2 | 192,1117 |
(D4xC12):23C2 = C42.114D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):23C2 | 192,1118 |
(D4xC12):24C2 = C42:19D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):24C2 | 192,1119 |
(D4xC12):25C2 = C42.115D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):25C2 | 192,1120 |
(D4xC12):26C2 = C42.116D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):26C2 | 192,1121 |
(D4xC12):27C2 = C42.117D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):27C2 | 192,1122 |
(D4xC12):28C2 = C42.118D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):28C2 | 192,1123 |
(D4xC12):29C2 = C42.119D6 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):29C2 | 192,1124 |
(D4xC12):30C2 = C12xD8 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):30C2 | 192,870 |
(D4xC12):31C2 = C3xD8:C4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):31C2 | 192,875 |
(D4xC12):32C2 = C3xC4:D8 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):32C2 | 192,892 |
(D4xC12):33C2 = C3xD4.2D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):33C2 | 192,896 |
(D4xC12):34C2 = C3xC22.11C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):34C2 | 192,1407 |
(D4xC12):35C2 = C3xC23.33C23 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):35C2 | 192,1409 |
(D4xC12):36C2 = C3xC22.19C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):36C2 | 192,1414 |
(D4xC12):37C2 = C3xC23.36C23 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):37C2 | 192,1418 |
(D4xC12):38C2 = C3xC22.26C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):38C2 | 192,1421 |
(D4xC12):39C2 = C3xC22.32C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):39C2 | 192,1427 |
(D4xC12):40C2 = C3xC22.33C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):40C2 | 192,1428 |
(D4xC12):41C2 = C3xC22.34C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):41C2 | 192,1429 |
(D4xC12):42C2 = C3xC22.36C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):42C2 | 192,1431 |
(D4xC12):43C2 = C3xD42 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):43C2 | 192,1434 |
(D4xC12):44C2 = C3xD4:5D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):44C2 | 192,1435 |
(D4xC12):45C2 = C3xD4:6D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):45C2 | 192,1436 |
(D4xC12):46C2 = C3xQ8:5D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):46C2 | 192,1437 |
(D4xC12):47C2 = C3xQ8:6D4 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):47C2 | 192,1439 |
(D4xC12):48C2 = C3xC22.45C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 48 | | (D4xC12):48C2 | 192,1440 |
(D4xC12):49C2 = C3xC22.47C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):49C2 | 192,1442 |
(D4xC12):50C2 = C3xC22.49C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):50C2 | 192,1444 |
(D4xC12):51C2 = C3xC22.53C24 | φ: C2/C1 → C2 ⊆ Out D4xC12 | 96 | | (D4xC12):51C2 | 192,1448 |
(D4xC12):52C2 = C12xC4oD4 | φ: trivial image | 96 | | (D4xC12):52C2 | 192,1406 |