Extensions 1→N→G→Q→1 with N=D4xC12 and Q=C2

Direct product G=NxQ with N=D4xC12 and Q=C2
dρLabelID
D4xC2xC1296D4xC2xC12192,1404

Semidirect products G=N:Q with N=D4xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC12):1C2 = C4xD4:S3φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):1C2192,572
(D4xC12):2C2 = C42.48D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):2C2192,573
(D4xC12):3C2 = C12:7D8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):3C2192,574
(D4xC12):4C2 = D4.1D12φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):4C2192,575
(D4xC12):5C2 = C4xD4:2S3φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):5C2192,1095
(D4xC12):6C2 = C42.102D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):6C2192,1097
(D4xC12):7C2 = C42.104D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):7C2192,1099
(D4xC12):8C2 = C4xS3xD4φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):8C2192,1103
(D4xC12):9C2 = C42:13D6φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):9C2192,1104
(D4xC12):10C2 = C42.108D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):10C2192,1105
(D4xC12):11C2 = C42:14D6φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):11C2192,1106
(D4xC12):12C2 = C42.228D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):12C2192,1107
(D4xC12):13C2 = D4xD12φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):13C2192,1108
(D4xC12):14C2 = D12:23D4φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):14C2192,1109
(D4xC12):15C2 = D12:24D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):15C2192,1110
(D4xC12):16C2 = Dic6:23D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):16C2192,1111
(D4xC12):17C2 = Dic6:24D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):17C2192,1112
(D4xC12):18C2 = D4:5D12φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):18C2192,1113
(D4xC12):19C2 = D4:6D12φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):19C2192,1114
(D4xC12):20C2 = C42:18D6φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):20C2192,1115
(D4xC12):21C2 = C42.229D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):21C2192,1116
(D4xC12):22C2 = C42.113D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):22C2192,1117
(D4xC12):23C2 = C42.114D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):23C2192,1118
(D4xC12):24C2 = C42:19D6φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):24C2192,1119
(D4xC12):25C2 = C42.115D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):25C2192,1120
(D4xC12):26C2 = C42.116D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):26C2192,1121
(D4xC12):27C2 = C42.117D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):27C2192,1122
(D4xC12):28C2 = C42.118D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):28C2192,1123
(D4xC12):29C2 = C42.119D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):29C2192,1124
(D4xC12):30C2 = C12xD8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):30C2192,870
(D4xC12):31C2 = C3xD8:C4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):31C2192,875
(D4xC12):32C2 = C3xC4:D8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):32C2192,892
(D4xC12):33C2 = C3xD4.2D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):33C2192,896
(D4xC12):34C2 = C3xC22.11C24φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):34C2192,1407
(D4xC12):35C2 = C3xC23.33C23φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):35C2192,1409
(D4xC12):36C2 = C3xC22.19C24φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):36C2192,1414
(D4xC12):37C2 = C3xC23.36C23φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):37C2192,1418
(D4xC12):38C2 = C3xC22.26C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):38C2192,1421
(D4xC12):39C2 = C3xC22.32C24φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):39C2192,1427
(D4xC12):40C2 = C3xC22.33C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):40C2192,1428
(D4xC12):41C2 = C3xC22.34C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):41C2192,1429
(D4xC12):42C2 = C3xC22.36C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):42C2192,1431
(D4xC12):43C2 = C3xD42φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):43C2192,1434
(D4xC12):44C2 = C3xD4:5D4φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):44C2192,1435
(D4xC12):45C2 = C3xD4:6D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):45C2192,1436
(D4xC12):46C2 = C3xQ8:5D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):46C2192,1437
(D4xC12):47C2 = C3xQ8:6D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):47C2192,1439
(D4xC12):48C2 = C3xC22.45C24φ: C2/C1C2 ⊆ Out D4xC1248(D4xC12):48C2192,1440
(D4xC12):49C2 = C3xC22.47C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):49C2192,1442
(D4xC12):50C2 = C3xC22.49C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):50C2192,1444
(D4xC12):51C2 = C3xC22.53C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12):51C2192,1448
(D4xC12):52C2 = C12xC4oD4φ: trivial image96(D4xC12):52C2192,1406

Non-split extensions G=N.Q with N=D4xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC12).1C2 = C12.57D8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).1C2192,93
(D4xC12).2C2 = C12.50D8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).2C2192,566
(D4xC12).3C2 = C12.38SD16φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).3C2192,567
(D4xC12).4C2 = D4.3Dic6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).4C2192,568
(D4xC12).5C2 = D4xC3:C8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).5C2192,569
(D4xC12).6C2 = C42.47D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).6C2192,570
(D4xC12).7C2 = C12:3M4(2)φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).7C2192,571
(D4xC12).8C2 = C4xD4.S3φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).8C2192,576
(D4xC12).9C2 = C42.51D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).9C2192,577
(D4xC12).10C2 = D4.2D12φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).10C2192,578
(D4xC12).11C2 = D4xDic6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).11C2192,1096
(D4xC12).12C2 = D4:5Dic6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).12C2192,1098
(D4xC12).13C2 = C42.105D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).13C2192,1100
(D4xC12).14C2 = C42.106D6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).14C2192,1101
(D4xC12).15C2 = D4:6Dic6φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).15C2192,1102
(D4xC12).16C2 = C3xD4:C8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).16C2192,131
(D4xC12).17C2 = C3xC8:9D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).17C2192,868
(D4xC12).18C2 = C3xC8:6D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).18C2192,869
(D4xC12).19C2 = C12xSD16φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).19C2192,871
(D4xC12).20C2 = C3xSD16:C4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).20C2192,873
(D4xC12).21C2 = C3xD4.D4φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).21C2192,894
(D4xC12).22C2 = C3xD4:Q8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).22C2192,907
(D4xC12).23C2 = C3xD4:2Q8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).23C2192,909
(D4xC12).24C2 = C3xD4.Q8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).24C2192,911
(D4xC12).25C2 = C3xD4xQ8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).25C2192,1438
(D4xC12).26C2 = C3xC22.46C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).26C2192,1441
(D4xC12).27C2 = C3xD4:3Q8φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).27C2192,1443
(D4xC12).28C2 = C3xC22.50C24φ: C2/C1C2 ⊆ Out D4xC1296(D4xC12).28C2192,1445
(D4xC12).29C2 = D4xC24φ: trivial image96(D4xC12).29C2192,867

׿
x
:
Z
F
o
wr
Q
<