Copied to
clipboard

G = D4.3Dic6order 192 = 26·3

The non-split extension by D4 of Dic6 acting via Dic6/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.3Dic6, C42.46D6, (C4xD4).4S3, C3:6(D4.Q8), (C3xD4).3Q8, C4:C4.240D6, C12:C8:19C2, (D4xC12).4C2, (C2xC12).59D4, C12.27(C2xQ8), (C2xD4).187D6, C6.87(C4oD8), C6.Q16:31C2, C4.11(C2xDic6), C12.47(C4oD4), C4.61(C4oD12), C6.86(C8:C22), (C4xC12).80C22, C12.6Q8:11C2, C12.Q8:31C2, D4:Dic3.9C2, C6.63(C22:Q8), (C2xC12).334C23, C2.8(D12:6C22), (C6xD4).229C22, C2.10(Q8.13D6), C4:Dic3.138C22, C2.14(C12.48D4), (C2xC6).465(C2xD4), (C2xC3:C8).91C22, (C2xC4).216(C3:D4), (C3xC4:C4).271C22, (C2xC4).434(C22xS3), C22.148(C2xC3:D4), SmallGroup(192,568)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D4.3Dic6
C1C3C6C12C2xC12C4:Dic3C12.6Q8 — D4.3Dic6
C3C6C2xC12 — D4.3Dic6
C1C22C42C4xD4

Generators and relations for D4.3Dic6
 G = < a,b,c,d | a4=b2=c12=1, d2=a2c6, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 248 in 102 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C22xC4, C2xD4, C3:C8, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, D4:C4, C4:C8, C4.Q8, C2.D8, C4xD4, C42.C2, C2xC3:C8, Dic3:C4, C4:Dic3, C4xC12, C3xC22:C4, C3xC4:C4, C22xC12, C6xD4, D4.Q8, C12:C8, C6.Q16, C12.Q8, D4:Dic3, C12.6Q8, D4xC12, D4.3Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C4oD4, Dic6, C3:D4, C22xS3, C22:Q8, C4oD8, C8:C22, C2xDic6, C4oD12, C2xC3:D4, D4.Q8, C12.48D4, D12:6C22, Q8.13D6, D4.3Dic6

Smallest permutation representation of D4.3Dic6
On 96 points
Generators in S96
(1 78 72 28)(2 79 61 29)(3 80 62 30)(4 81 63 31)(5 82 64 32)(6 83 65 33)(7 84 66 34)(8 73 67 35)(9 74 68 36)(10 75 69 25)(11 76 70 26)(12 77 71 27)(13 47 85 49)(14 48 86 50)(15 37 87 51)(16 38 88 52)(17 39 89 53)(18 40 90 54)(19 41 91 55)(20 42 92 56)(21 43 93 57)(22 44 94 58)(23 45 95 59)(24 46 96 60)
(1 84)(2 73)(3 74)(4 75)(5 76)(6 77)(7 78)(8 79)(9 80)(10 81)(11 82)(12 83)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 85)(20 86)(21 87)(22 88)(23 89)(24 90)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 61)(36 62)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 51 66 43)(2 48 67 56)(3 49 68 41)(4 46 69 54)(5 59 70 39)(6 44 71 52)(7 57 72 37)(8 42 61 50)(9 55 62 47)(10 40 63 60)(11 53 64 45)(12 38 65 58)(13 74 91 30)(14 35 92 79)(15 84 93 28)(16 33 94 77)(17 82 95 26)(18 31 96 75)(19 80 85 36)(20 29 86 73)(21 78 87 34)(22 27 88 83)(23 76 89 32)(24 25 90 81)

G:=sub<Sym(96)| (1,78,72,28)(2,79,61,29)(3,80,62,30)(4,81,63,31)(5,82,64,32)(6,83,65,33)(7,84,66,34)(8,73,67,35)(9,74,68,36)(10,75,69,25)(11,76,70,26)(12,77,71,27)(13,47,85,49)(14,48,86,50)(15,37,87,51)(16,38,88,52)(17,39,89,53)(18,40,90,54)(19,41,91,55)(20,42,92,56)(21,43,93,57)(22,44,94,58)(23,45,95,59)(24,46,96,60), (1,84)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,61)(36,62)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,66,43)(2,48,67,56)(3,49,68,41)(4,46,69,54)(5,59,70,39)(6,44,71,52)(7,57,72,37)(8,42,61,50)(9,55,62,47)(10,40,63,60)(11,53,64,45)(12,38,65,58)(13,74,91,30)(14,35,92,79)(15,84,93,28)(16,33,94,77)(17,82,95,26)(18,31,96,75)(19,80,85,36)(20,29,86,73)(21,78,87,34)(22,27,88,83)(23,76,89,32)(24,25,90,81)>;

G:=Group( (1,78,72,28)(2,79,61,29)(3,80,62,30)(4,81,63,31)(5,82,64,32)(6,83,65,33)(7,84,66,34)(8,73,67,35)(9,74,68,36)(10,75,69,25)(11,76,70,26)(12,77,71,27)(13,47,85,49)(14,48,86,50)(15,37,87,51)(16,38,88,52)(17,39,89,53)(18,40,90,54)(19,41,91,55)(20,42,92,56)(21,43,93,57)(22,44,94,58)(23,45,95,59)(24,46,96,60), (1,84)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,61)(36,62)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,66,43)(2,48,67,56)(3,49,68,41)(4,46,69,54)(5,59,70,39)(6,44,71,52)(7,57,72,37)(8,42,61,50)(9,55,62,47)(10,40,63,60)(11,53,64,45)(12,38,65,58)(13,74,91,30)(14,35,92,79)(15,84,93,28)(16,33,94,77)(17,82,95,26)(18,31,96,75)(19,80,85,36)(20,29,86,73)(21,78,87,34)(22,27,88,83)(23,76,89,32)(24,25,90,81) );

G=PermutationGroup([[(1,78,72,28),(2,79,61,29),(3,80,62,30),(4,81,63,31),(5,82,64,32),(6,83,65,33),(7,84,66,34),(8,73,67,35),(9,74,68,36),(10,75,69,25),(11,76,70,26),(12,77,71,27),(13,47,85,49),(14,48,86,50),(15,37,87,51),(16,38,88,52),(17,39,89,53),(18,40,90,54),(19,41,91,55),(20,42,92,56),(21,43,93,57),(22,44,94,58),(23,45,95,59),(24,46,96,60)], [(1,84),(2,73),(3,74),(4,75),(5,76),(6,77),(7,78),(8,79),(9,80),(10,81),(11,82),(12,83),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,85),(20,86),(21,87),(22,88),(23,89),(24,90),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,61),(36,62),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,51,66,43),(2,48,67,56),(3,49,68,41),(4,46,69,54),(5,59,70,39),(6,44,71,52),(7,57,72,37),(8,42,61,50),(9,55,62,47),(10,40,63,60),(11,53,64,45),(12,38,65,58),(13,74,91,30),(14,35,92,79),(15,84,93,28),(16,33,94,77),(17,82,95,26),(18,31,96,75),(19,80,85,36),(20,29,86,73),(21,78,87,34),(22,27,88,83),(23,76,89,32),(24,25,90,81)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D12E···12L
order1222223444444444666666688881212121212···12
size11114422222444242422244441212121222224···4

39 irreducible representations

dim111111122222222222444
type+++++++++-+++-+
imageC1C2C2C2C2C2C2S3D4Q8D6D6D6C4oD4C3:D4Dic6C4oD8C4oD12C8:C22D12:6C22Q8.13D6
kernelD4.3Dic6C12:C8C6.Q16C12.Q8D4:Dic3C12.6Q8D4xC12C4xD4C2xC12C3xD4C42C4:C4C2xD4C12C2xC4D4C6C4C6C2C2
# reps111121112211124444122

Matrix representation of D4.3Dic6 in GL6(F73)

7200000
0720000
0072000
0007200
0000171
0000172
,
7200000
4010000
001000
00727200
0000171
0000072
,
900000
25650000
0046000
00272700
0000460
0000046
,
4020000
40330000
00727100
001100
0000032
0000160

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,71,72],[72,40,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,71,72],[9,25,0,0,0,0,0,65,0,0,0,0,0,0,46,27,0,0,0,0,0,27,0,0,0,0,0,0,46,0,0,0,0,0,0,46],[40,40,0,0,0,0,2,33,0,0,0,0,0,0,72,1,0,0,0,0,71,1,0,0,0,0,0,0,0,16,0,0,0,0,32,0] >;

D4.3Dic6 in GAP, Magma, Sage, TeX

D_4._3{\rm Dic}_6
% in TeX

G:=Group("D4.3Dic6");
// GroupNames label

G:=SmallGroup(192,568);
// by ID

G=gap.SmallGroup(192,568);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,344,254,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=1,d^2=a^2*c^6,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<