extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1(C2×Dic3) = D8.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.1(C2xDic3) | 192,122 |
C8.2(C2×Dic3) = Q16.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 96 | 4 | C8.2(C2xDic3) | 192,124 |
C8.3(C2×Dic3) = D8⋊2Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.3(C2xDic3) | 192,125 |
C8.4(C2×Dic3) = C23.9Dic6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.4(C2xDic3) | 192,684 |
C8.5(C2×Dic3) = Q16⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 192 | | C8.5(C2xDic3) | 192,743 |
C8.6(C2×Dic3) = D8⋊4Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.6(C2xDic3) | 192,756 |
C8.7(C2×Dic3) = D8⋊1Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 96 | | C8.7(C2xDic3) | 192,121 |
C8.8(C2×Dic3) = C6.5Q32 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.8(C2xDic3) | 192,123 |
C8.9(C2×Dic3) = C24.41D4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 96 | 4 | C8.9(C2xDic3) | 192,126 |
C8.10(C2×Dic3) = Dic3×Q16 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 192 | | C8.10(C2xDic3) | 192,740 |
C8.11(C2×Dic3) = D8⋊5Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 48 | 4 | C8.11(C2xDic3) | 192,755 |
C8.12(C2×Dic3) = C12.7C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 96 | | C8.12(C2xDic3) | 192,681 |
C8.13(C2×Dic3) = C24.78C23 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C8 | 96 | 4 | C8.13(C2xDic3) | 192,699 |
C8.14(C2×Dic3) = C48⋊5C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 192 | | C8.14(C2xDic3) | 192,63 |
C8.15(C2×Dic3) = C48⋊6C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 192 | | C8.15(C2xDic3) | 192,64 |
C8.16(C2×Dic3) = C48.C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 96 | 2 | C8.16(C2xDic3) | 192,65 |
C8.17(C2×Dic3) = C23.27D12 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 96 | | C8.17(C2xDic3) | 192,665 |
C8.18(C2×Dic3) = C24.Q8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 48 | 4 | C8.18(C2xDic3) | 192,72 |
C8.19(C2×Dic3) = C2×C24.C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 96 | | C8.19(C2xDic3) | 192,666 |
C8.20(C2×Dic3) = C48⋊C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C8 | 48 | 4 | C8.20(C2xDic3) | 192,71 |
C8.21(C2×Dic3) = C2×C3⋊C32 | central extension (φ=1) | 192 | | C8.21(C2xDic3) | 192,57 |
C8.22(C2×Dic3) = C3⋊M6(2) | central extension (φ=1) | 96 | 2 | C8.22(C2xDic3) | 192,58 |
C8.23(C2×Dic3) = Dic3×C16 | central extension (φ=1) | 192 | | C8.23(C2xDic3) | 192,59 |
C8.24(C2×Dic3) = C48⋊10C4 | central extension (φ=1) | 192 | | C8.24(C2xDic3) | 192,61 |
C8.25(C2×Dic3) = C22×C3⋊C16 | central extension (φ=1) | 192 | | C8.25(C2xDic3) | 192,655 |
C8.26(C2×Dic3) = C2×C12.C8 | central extension (φ=1) | 96 | | C8.26(C2xDic3) | 192,656 |
C8.27(C2×Dic3) = C12.12C42 | central extension (φ=1) | 96 | | C8.27(C2xDic3) | 192,660 |