Extensions 1→N→G→Q→1 with N=C8 and Q=C2×Dic3

Direct product G=N×Q with N=C8 and Q=C2×Dic3
dρLabelID
Dic3×C2×C8192Dic3xC2xC8192,657

Semidirect products G=N:Q with N=C8 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C81(C2×Dic3) = C23.52D12φ: C2×Dic3/C6C22 ⊆ Aut C896C8:1(C2xDic3)192,680
C82(C2×Dic3) = D8⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C896C8:2(C2xDic3)192,711
C83(C2×Dic3) = SD16⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C896C8:3(C2xDic3)192,723
C84(C2×Dic3) = Dic3×D8φ: C2×Dic3/Dic3C2 ⊆ Aut C896C8:4(C2xDic3)192,708
C85(C2×Dic3) = Dic3×SD16φ: C2×Dic3/Dic3C2 ⊆ Aut C896C8:5(C2xDic3)192,720
C86(C2×Dic3) = Dic3×M4(2)φ: C2×Dic3/Dic3C2 ⊆ Aut C896C8:6(C2xDic3)192,676
C87(C2×Dic3) = C2×C241C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8192C8:7(C2xDic3)192,664
C88(C2×Dic3) = C2×C8⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C8192C8:8(C2xDic3)192,663
C89(C2×Dic3) = C2×C24⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8192C8:9(C2xDic3)192,659

Non-split extensions G=N.Q with N=C8 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C8.1(C2×Dic3) = D8.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C8484C8.1(C2xDic3)192,122
C8.2(C2×Dic3) = Q16.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C8964C8.2(C2xDic3)192,124
C8.3(C2×Dic3) = D82Dic3φ: C2×Dic3/C6C22 ⊆ Aut C8484C8.3(C2xDic3)192,125
C8.4(C2×Dic3) = C23.9Dic6φ: C2×Dic3/C6C22 ⊆ Aut C8484C8.4(C2xDic3)192,684
C8.5(C2×Dic3) = Q16⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C8192C8.5(C2xDic3)192,743
C8.6(C2×Dic3) = D84Dic3φ: C2×Dic3/C6C22 ⊆ Aut C8484C8.6(C2xDic3)192,756
C8.7(C2×Dic3) = D81Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C896C8.7(C2xDic3)192,121
C8.8(C2×Dic3) = C6.5Q32φ: C2×Dic3/Dic3C2 ⊆ Aut C8192C8.8(C2xDic3)192,123
C8.9(C2×Dic3) = C24.41D4φ: C2×Dic3/Dic3C2 ⊆ Aut C8964C8.9(C2xDic3)192,126
C8.10(C2×Dic3) = Dic3×Q16φ: C2×Dic3/Dic3C2 ⊆ Aut C8192C8.10(C2xDic3)192,740
C8.11(C2×Dic3) = D85Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C8484C8.11(C2xDic3)192,755
C8.12(C2×Dic3) = C12.7C42φ: C2×Dic3/Dic3C2 ⊆ Aut C896C8.12(C2xDic3)192,681
C8.13(C2×Dic3) = C24.78C23φ: C2×Dic3/Dic3C2 ⊆ Aut C8964C8.13(C2xDic3)192,699
C8.14(C2×Dic3) = C485C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8192C8.14(C2xDic3)192,63
C8.15(C2×Dic3) = C486C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8192C8.15(C2xDic3)192,64
C8.16(C2×Dic3) = C48.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8962C8.16(C2xDic3)192,65
C8.17(C2×Dic3) = C23.27D12φ: C2×Dic3/C2×C6C2 ⊆ Aut C896C8.17(C2xDic3)192,665
C8.18(C2×Dic3) = C24.Q8φ: C2×Dic3/C2×C6C2 ⊆ Aut C8484C8.18(C2xDic3)192,72
C8.19(C2×Dic3) = C2×C24.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C896C8.19(C2xDic3)192,666
C8.20(C2×Dic3) = C48⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C8484C8.20(C2xDic3)192,71
C8.21(C2×Dic3) = C2×C3⋊C32central extension (φ=1)192C8.21(C2xDic3)192,57
C8.22(C2×Dic3) = C3⋊M6(2)central extension (φ=1)962C8.22(C2xDic3)192,58
C8.23(C2×Dic3) = Dic3×C16central extension (φ=1)192C8.23(C2xDic3)192,59
C8.24(C2×Dic3) = C4810C4central extension (φ=1)192C8.24(C2xDic3)192,61
C8.25(C2×Dic3) = C22×C3⋊C16central extension (φ=1)192C8.25(C2xDic3)192,655
C8.26(C2×Dic3) = C2×C12.C8central extension (φ=1)96C8.26(C2xDic3)192,656
C8.27(C2×Dic3) = C12.12C42central extension (φ=1)96C8.27(C2xDic3)192,660

׿
×
𝔽