Extensions 1→N→G→Q→1 with N=C6×SD16 and Q=C2

Direct product G=N×Q with N=C6×SD16 and Q=C2
dρLabelID
C2×C6×SD1696C2xC6xSD16192,1459

Semidirect products G=N:Q with N=C6×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×SD16)⋊1C2 = C24.44D4φ: C2/C1C2 ⊆ Out C6×SD16484(C6xSD16):1C2192,736
(C6×SD16)⋊2C2 = SD1613D6φ: C2/C1C2 ⊆ Out C6×SD16484(C6xSD16):2C2192,1321
(C6×SD16)⋊3C2 = C248D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):3C2192,733
(C6×SD16)⋊4C2 = C249D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):4C2192,735
(C6×SD16)⋊5C2 = C2×Q83D6φ: C2/C1C2 ⊆ Out C6×SD1648(C6xSD16):5C2192,1318
(C6×SD16)⋊6C2 = C2×D4.D6φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):6C2192,1319
(C6×SD16)⋊7C2 = C24.43D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):7C2192,727
(C6×SD16)⋊8C2 = C2414D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):8C2192,730
(C6×SD16)⋊9C2 = C2415D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):9C2192,734
(C6×SD16)⋊10C2 = C2×S3×SD16φ: C2/C1C2 ⊆ Out C6×SD1648(C6xSD16):10C2192,1317
(C6×SD16)⋊11C2 = C2×Q8.7D6φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):11C2192,1320
(C6×SD16)⋊12C2 = C3×C8⋊D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):12C2192,901
(C6×SD16)⋊13C2 = C3×D4.3D4φ: C2/C1C2 ⊆ Out C6×SD16484(C6xSD16):13C2192,904
(C6×SD16)⋊14C2 = C3×C83D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):14C2192,929
(C6×SD16)⋊15C2 = C6×C8⋊C22φ: C2/C1C2 ⊆ Out C6×SD1648(C6xSD16):15C2192,1462
(C6×SD16)⋊16C2 = C6×C8.C22φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):16C2192,1463
(C6×SD16)⋊17C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C6×SD16484(C6xSD16):17C2192,1466
(C6×SD16)⋊18C2 = Dic35SD16φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):18C2192,722
(C6×SD16)⋊19C2 = (C3×D4).D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):19C2192,724
(C6×SD16)⋊20C2 = D66SD16φ: C2/C1C2 ⊆ Out C6×SD1648(C6xSD16):20C2192,728
(C6×SD16)⋊21C2 = D68SD16φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):21C2192,729
(C6×SD16)⋊22C2 = D127D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):22C2192,731
(C6×SD16)⋊23C2 = Dic6.16D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):23C2192,732
(C6×SD16)⋊24C2 = C3×Q8⋊D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):24C2192,881
(C6×SD16)⋊25C2 = C3×D4⋊D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):25C2192,882
(C6×SD16)⋊26C2 = C3×C22⋊SD16φ: C2/C1C2 ⊆ Out C6×SD1648(C6xSD16):26C2192,883
(C6×SD16)⋊27C2 = C3×D4.7D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):27C2192,885
(C6×SD16)⋊28C2 = C3×C4⋊SD16φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):28C2192,893
(C6×SD16)⋊29C2 = C3×D4.2D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):29C2192,896
(C6×SD16)⋊30C2 = C3×C88D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):30C2192,898
(C6×SD16)⋊31C2 = C3×C85D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):31C2192,925
(C6×SD16)⋊32C2 = C3×C8.12D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16):32C2192,928
(C6×SD16)⋊33C2 = C6×C4○D8φ: trivial image96(C6xSD16):33C2192,1461

Non-split extensions G=N.Q with N=C6×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×SD16).1C2 = SD16⋊Dic3φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).1C2192,723
(C6×SD16).2C2 = C24.31D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).2C2192,726
(C6×SD16).3C2 = Dic3×SD16φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).3C2192,720
(C6×SD16).4C2 = C3×SD16⋊C4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).4C2192,873
(C6×SD16).5C2 = C3×C8.2D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).5C2192,930
(C6×SD16).6C2 = Dic33SD16φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).6C2192,721
(C6×SD16).7C2 = (C3×Q8).D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).7C2192,725
(C6×SD16).8C2 = C3×D4.D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).8C2192,894
(C6×SD16).9C2 = C3×Q8.D4φ: C2/C1C2 ⊆ Out C6×SD1696(C6xSD16).9C2192,897
(C6×SD16).10C2 = C12×SD16φ: trivial image96(C6xSD16).10C2192,871

׿
×
𝔽