Extensions 1→N→G→Q→1 with N=C3×C4○D8 and Q=C2

Direct product G=N×Q with N=C3×C4○D8 and Q=C2
dρLabelID
C6×C4○D896C6xC4oD8192,1461

Semidirect products G=N:Q with N=C3×C4○D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4○D8)⋊1C2 = Q16.D6φ: C2/C1C2 ⊆ Out C3×C4○D8964(C3xC4oD8):1C2192,753
(C3×C4○D8)⋊2C2 = S3×C4○D8φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):2C2192,1326
(C3×C4○D8)⋊3C2 = SD16⋊D6φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):3C2192,1327
(C3×C4○D8)⋊4C2 = Q16⋊D6φ: C2/C1C2 ⊆ Out C3×C4○D8484+(C3xC4oD8):4C2192,752
(C3×C4○D8)⋊5C2 = D815D6φ: C2/C1C2 ⊆ Out C3×C4○D8484+(C3xC4oD8):5C2192,1328
(C3×C4○D8)⋊6C2 = D8.10D6φ: C2/C1C2 ⊆ Out C3×C4○D8964-(C3xC4oD8):6C2192,1330
(C3×C4○D8)⋊7C2 = D811D6φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):7C2192,1329
(C3×C4○D8)⋊8C2 = C3×C4○D16φ: C2/C1C2 ⊆ Out C3×C4○D8962(C3xC4oD8):8C2192,941
(C3×C4○D8)⋊9C2 = C3×C16⋊C22φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):9C2192,942
(C3×C4○D8)⋊10C2 = C3×D8⋊C22φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):10C2192,1464
(C3×C4○D8)⋊11C2 = C3×D4○D8φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):11C2192,1465
(C3×C4○D8)⋊12C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8):12C2192,1466
(C3×C4○D8)⋊13C2 = C3×Q8○D8φ: C2/C1C2 ⊆ Out C3×C4○D8964(C3xC4oD8):13C2192,1467

Non-split extensions G=N.Q with N=C3×C4○D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4○D8).1C2 = C24.41D4φ: C2/C1C2 ⊆ Out C3×C4○D8964(C3xC4oD8).1C2192,126
(C3×C4○D8).2C2 = D85Dic3φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8).2C2192,755
(C3×C4○D8).3C2 = D84Dic3φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8).3C2192,756
(C3×C4○D8).4C2 = D8.9D6φ: C2/C1C2 ⊆ Out C3×C4○D8964-(C3xC4oD8).4C2192,754
(C3×C4○D8).5C2 = D82Dic3φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8).5C2192,125
(C3×C4○D8).6C2 = C3×D8.C4φ: C2/C1C2 ⊆ Out C3×C4○D8962(C3xC4oD8).6C2192,165
(C3×C4○D8).7C2 = C3×D82C4φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8).7C2192,166
(C3×C4○D8).8C2 = C3×C8.26D4φ: C2/C1C2 ⊆ Out C3×C4○D8484(C3xC4oD8).8C2192,877
(C3×C4○D8).9C2 = C3×Q32⋊C2φ: C2/C1C2 ⊆ Out C3×C4○D8964(C3xC4oD8).9C2192,943
(C3×C4○D8).10C2 = C3×C8○D8φ: trivial image482(C3xC4oD8).10C2192,876

׿
×
𝔽