Extensions 1→N→G→Q→1 with N=C2 and Q=C2×A4⋊C4

Direct product G=N×Q with N=C2 and Q=C2×A4⋊C4
dρLabelID
C22×A4⋊C448C2^2xA4:C4192,1487


Non-split extensions G=N.Q with N=C2 and Q=C2×A4⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×A4⋊C4) = C2×A4⋊C8central extension (φ=1)48C2.1(C2xA4:C4)192,967
C2.2(C2×A4⋊C4) = C4×A4⋊C4central extension (φ=1)48C2.2(C2xA4:C4)192,969
C2.3(C2×A4⋊C4) = A4⋊M4(2)central stem extension (φ=1)246C2.3(C2xA4:C4)192,968
C2.4(C2×A4⋊C4) = C24.4D6central stem extension (φ=1)48C2.4(C2xA4:C4)192,971
C2.5(C2×A4⋊C4) = C2×Q8⋊Dic3central stem extension (φ=1)64C2.5(C2xA4:C4)192,977
C2.6(C2×A4⋊C4) = C23.15S4central stem extension (φ=1)32C2.6(C2xA4:C4)192,979
C2.7(C2×A4⋊C4) = C2×U2(𝔽3)central stem extension (φ=1)48C2.7(C2xA4:C4)192,981
C2.8(C2×A4⋊C4) = U2(𝔽3)⋊C2central stem extension (φ=1)324C2.8(C2xA4:C4)192,982
C2.9(C2×A4⋊C4) = C4.A4⋊C4central stem extension (φ=1)64C2.9(C2xA4:C4)192,983
C2.10(C2×A4⋊C4) = (C2×C4).S4central stem extension (φ=1)64C2.10(C2xA4:C4)192,985
C2.11(C2×A4⋊C4) = C25.S3central stem extension (φ=1)24C2.11(C2xA4:C4)192,991

׿
×
𝔽