Copied to
clipboard

G = C2×A4⋊C8order 192 = 26·3

Direct product of C2 and A4⋊C8

direct product, non-abelian, soluble, monomial

Aliases: C2×A4⋊C8, C24.1Dic3, (C2×A4)⋊C8, C23⋊(C3⋊C8), A42(C2×C8), C4.30(C2×S4), (C4×A4).3C4, (C2×C4).23S4, C4.6(A4⋊C4), (C23×C4).1S3, (C22×A4).2C4, (C22×C4).10D6, C22.8(A4⋊C4), (C4×A4).14C22, C23.1(C2×Dic3), (C22×C4).2Dic3, C22⋊(C2×C3⋊C8), (C2×C4×A4).5C2, C2.1(C2×A4⋊C4), (C2×A4).6(C2×C4), SmallGroup(192,967)

Series: Derived Chief Lower central Upper central

C1C22A4 — C2×A4⋊C8
C1C22A4C2×A4C4×A4A4⋊C8 — C2×A4⋊C8
A4 — C2×A4⋊C8
C1C2×C4

Generators and relations for C2×A4⋊C8
 G = < a,b,c,d,e | a2=b2=c2=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

Subgroups: 254 in 89 conjugacy classes, 27 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2×C4, C2×C4, C23, C23, C23, C12, A4, C2×C6, C2×C8, C22×C4, C22×C4, C24, C3⋊C8, C2×C12, C2×A4, C2×A4, C22⋊C8, C22×C8, C23×C4, C2×C3⋊C8, C4×A4, C22×A4, C2×C22⋊C8, A4⋊C8, C2×C4×A4, C2×A4⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C2×Dic3, S4, C2×C3⋊C8, A4⋊C4, C2×S4, A4⋊C8, C2×A4⋊C4, C2×A4⋊C8

Smallest permutation representation of C2×A4⋊C8
On 48 points
Generators in S48
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 28)(18 29)(19 30)(20 31)(21 32)(22 25)(23 26)(24 27)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 41)
(1 5)(2 15)(3 7)(4 9)(6 11)(8 13)(10 14)(12 16)(17 28)(18 25)(19 30)(20 27)(21 32)(22 29)(23 26)(24 31)(33 37)(34 47)(35 39)(36 41)(38 43)(40 45)(42 46)(44 48)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 41)
(1 21 47)(2 48 22)(3 23 41)(4 42 24)(5 17 43)(6 44 18)(7 19 45)(8 46 20)(9 33 27)(10 28 34)(11 35 29)(12 30 36)(13 37 31)(14 32 38)(15 39 25)(16 26 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,15)(3,7)(4,9)(6,11)(8,13)(10,14)(12,16)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(33,37)(34,47)(35,39)(36,41)(38,43)(40,45)(42,46)(44,48), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,21,47)(2,48,22)(3,23,41)(4,42,24)(5,17,43)(6,44,18)(7,19,45)(8,46,20)(9,33,27)(10,28,34)(11,35,29)(12,30,36)(13,37,31)(14,32,38)(15,39,25)(16,26,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,15)(3,7)(4,9)(6,11)(8,13)(10,14)(12,16)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31)(33,37)(34,47)(35,39)(36,41)(38,43)(40,45)(42,46)(44,48), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,21,47)(2,48,22)(3,23,41)(4,42,24)(5,17,43)(6,44,18)(7,19,45)(8,46,20)(9,33,27)(10,28,34)(11,35,29)(12,30,36)(13,37,31)(14,32,38)(15,39,25)(16,26,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,28),(18,29),(19,30),(20,31),(21,32),(22,25),(23,26),(24,27),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,41)], [(1,5),(2,15),(3,7),(4,9),(6,11),(8,13),(10,14),(12,16),(17,28),(18,25),(19,30),(20,27),(21,32),(22,29),(23,26),(24,31),(33,37),(34,47),(35,39),(36,41),(38,43),(40,45),(42,46),(44,48)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,41)], [(1,21,47),(2,48,22),(3,23,41),(4,42,24),(5,17,43),(6,44,18),(7,19,45),(8,46,20),(9,33,27),(10,28,34),(11,35,29),(12,30,36),(13,37,31),(14,32,38),(15,39,25),(16,26,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

40 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C8A···8P12A12B12C12D
order122222223444444446668···812121212
size111133338111133338886···68888

40 irreducible representations

dim1111112222233333
type++++-+-++
imageC1C2C2C4C4C8S3Dic3D6Dic3C3⋊C8S4A4⋊C4C2×S4A4⋊C4A4⋊C8
kernelC2×A4⋊C8A4⋊C8C2×C4×A4C4×A4C22×A4C2×A4C23×C4C22×C4C22×C4C24C23C2×C4C4C4C22C2
# reps1212281111422228

Matrix representation of C2×A4⋊C8 in GL5(𝔽73)

10000
01000
007200
000720
000072
,
10000
01000
00100
000720
000072
,
10000
01000
007200
00010
000072
,
072000
172000
00001
00100
00010
,
2942000
7144000
000072
000720
007200

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,72],[0,1,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[29,71,0,0,0,42,44,0,0,0,0,0,0,0,72,0,0,0,72,0,0,0,72,0,0] >;

C2×A4⋊C8 in GAP, Magma, Sage, TeX

C_2\times A_4\rtimes C_8
% in TeX

G:=Group("C2xA4:C8");
// GroupNames label

G:=SmallGroup(192,967);
// by ID

G=gap.SmallGroup(192,967);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,28,58,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽