non-abelian, soluble, monomial
Aliases: A4⋊2M4(2), C24.2Dic3, A4⋊C8⋊5C2, C4.31(C2×S4), (C4×A4).1C4, (C2×C4).12S4, C4.1(A4⋊C4), (C23×C4).4S3, (C22×A4).3C4, (C22×C4).11D6, C22⋊(C4.Dic3), C22.4(A4⋊C4), (C4×A4).15C22, C23.2(C2×Dic3), (C22×C4).3Dic3, (C2×C4×A4).4C2, C2.3(C2×A4⋊C4), (C2×A4).7(C2×C4), SmallGroup(192,968)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4⋊M4(2)
G = < a,b,c,d,e | a2=b2=c3=d8=e2=1, cac-1=dad-1=ab=ba, ae=ea, cbc-1=a, bd=db, be=eb, dcd-1=c-1, ce=ec, ede=d5 >
Subgroups: 254 in 81 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2×C4, C2×C4, C23, C23, C12, A4, C2×C6, C2×C8, M4(2), C22×C4, C22×C4, C24, C3⋊C8, C2×C12, C2×A4, C2×A4, C22⋊C8, C2×M4(2), C23×C4, C4.Dic3, C4×A4, C22×A4, C24.4C4, A4⋊C8, C2×C4×A4, A4⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C2×Dic3, S4, C4.Dic3, A4⋊C4, C2×S4, C2×A4⋊C4, A4⋊M4(2)
Character table of A4⋊M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 3 | 3 | 6 | 8 | 1 | 1 | 2 | 3 | 3 | 6 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | i | i | i | -i | -i | -i | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | -i | -i | i | i | i | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | 2 | 2 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | -2 | -2 | 2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | 2i | -2i | 0 | 2i | -2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from M4(2) |
ρ14 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | -2i | 2i | 0 | -2i | 2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | -2i | 2i | 0 | -2i | 2i | 0 | -√-3 | 1 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | -i | i | complex lifted from C4.Dic3 |
ρ16 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | 2i | -2i | 0 | 2i | -2i | 0 | -√-3 | 1 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | i | -i | complex lifted from C4.Dic3 |
ρ17 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | -2i | 2i | 0 | -2i | 2i | 0 | √-3 | 1 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | -i | i | complex lifted from C4.Dic3 |
ρ18 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | 2i | -2i | 0 | 2i | -2i | 0 | √-3 | 1 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | i | -i | complex lifted from C4.Dic3 |
ρ19 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ20 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ21 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ22 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ23 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | -3 | -3 | 3 | 1 | 1 | -1 | 0 | 0 | 0 | i | -i | i | i | -i | i | -i | -i | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ24 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | -3 | 1 | 1 | 1 | 0 | 0 | 0 | i | i | -i | -i | i | i | -i | -i | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ25 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | -3 | -3 | 3 | 1 | 1 | -1 | 0 | 0 | 0 | -i | i | -i | -i | i | -i | i | i | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ26 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | -3 | 1 | 1 | 1 | 0 | 0 | 0 | -i | -i | i | i | -i | -i | i | i | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ27 | 6 | -6 | 0 | 2 | -2 | 0 | 0 | 6i | -6i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -6 | 0 | 2 | -2 | 0 | 0 | -6i | 6i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5)(3 7)(9 13)(10 14)(11 15)(12 16)(17 21)(19 23)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)
(1 22 11)(2 12 23)(3 24 13)(4 14 17)(5 18 15)(6 16 19)(7 20 9)(8 10 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)
G:=sub<Sym(24)| (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(17,21)(19,23), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,22,11)(2,12,23)(3,24,13)(4,14,17)(5,18,15)(6,16,19)(7,20,9)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)>;
G:=Group( (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(17,21)(19,23), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,22,11)(2,12,23)(3,24,13)(4,14,17)(5,18,15)(6,16,19)(7,20,9)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23) );
G=PermutationGroup([[(1,5),(3,7),(9,13),(10,14),(11,15),(12,16),(17,21),(19,23)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24)], [(1,22,11),(2,12,23),(3,24,13),(4,14,17),(5,18,15),(6,16,19),(7,20,9),(8,10,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23)]])
G:=TransitiveGroup(24,294);
Matrix representation of A4⋊M4(2) ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
64 | 71 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 1 | 0 |
8 | 51 | 0 | 0 | 0 |
5 | 65 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
72 | 47 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,72,0,1,0,0,72,1,0],[64,0,0,0,0,71,8,0,0,0,0,0,1,72,0,0,0,0,72,1,0,0,0,72,0],[8,5,0,0,0,51,65,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[72,0,0,0,0,47,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4⋊M4(2) in GAP, Magma, Sage, TeX
A_4\rtimes M_4(2)
% in TeX
G:=Group("A4:M4(2)");
// GroupNames label
G:=SmallGroup(192,968);
// by ID
G=gap.SmallGroup(192,968);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,28,141,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=e^2=1,c*a*c^-1=d*a*d^-1=a*b=b*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations
Export