Copied to
clipboard

G = A4xC2xC8order 192 = 26·3

Direct product of C2xC8 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xC2xC8, C23:2C24, C24.4C12, (C23xC8):C3, C22:(C2xC24), C4.7(C4xA4), (C4xA4).6C4, (C22xC8):4C6, (C23xC4).5C6, (C22xA4).4C4, (C22xC4).9C12, C22.10(C4xA4), C4.12(C22xA4), (C4xA4).22C22, C23.17(C2xC12), C2.2(C2xC4xA4), (C2xC4xA4).11C2, (C2xC4).19(C2xA4), (C2xA4).13(C2xC4), (C22xC4).85(C2xC6), SmallGroup(192,1010)

Series: Derived Chief Lower central Upper central

C1C22 — A4xC2xC8
C1C22C23C22xC4C4xA4C2xC4xA4 — A4xC2xC8
C22 — A4xC2xC8
C1C2xC8

Generators and relations for A4xC2xC8
 G = < a,b,c,d,e | a2=b8=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 224 in 93 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2xC4, C2xC4, C23, C23, C23, C12, A4, C2xC6, C2xC8, C2xC8, C22xC4, C22xC4, C24, C24, C2xC12, C2xA4, C2xA4, C22xC8, C22xC8, C23xC4, C2xC24, C4xA4, C22xA4, C23xC8, C8xA4, C2xC4xA4, A4xC2xC8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, C12, A4, C2xC6, C2xC8, C24, C2xC12, C2xA4, C2xC24, C4xA4, C22xA4, C8xA4, C2xC4xA4, A4xC2xC8

Smallest permutation representation of A4xC2xC8
On 48 points
Generators in S48
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 5)(2 6)(3 7)(4 8)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 21)(18 22)(19 23)(20 24)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 15 39)(2 16 40)(3 9 33)(4 10 34)(5 11 35)(6 12 36)(7 13 37)(8 14 38)(17 32 41)(18 25 42)(19 26 43)(20 27 44)(21 28 45)(22 29 46)(23 30 47)(24 31 48)

G:=sub<Sym(48)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,6)(3,7)(4,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,15,39)(2,16,40)(3,9,33)(4,10,34)(5,11,35)(6,12,36)(7,13,37)(8,14,38)(17,32,41)(18,25,42)(19,26,43)(20,27,44)(21,28,45)(22,29,46)(23,30,47)(24,31,48)>;

G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,6)(3,7)(4,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,15,39)(2,16,40)(3,9,33)(4,10,34)(5,11,35)(6,12,36)(7,13,37)(8,14,38)(17,32,41)(18,25,42)(19,26,43)(20,27,44)(21,28,45)(22,29,46)(23,30,47)(24,31,48) );

G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,5),(2,6),(3,7),(4,8),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,21),(18,22),(19,23),(20,24),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,15,39),(2,16,40),(3,9,33),(4,10,34),(5,11,35),(6,12,36),(7,13,37),(8,14,38),(17,32,41),(18,25,42),(19,26,43),(20,27,44),(21,28,45),(22,29,46),(23,30,47),(24,31,48)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H6A···6F8A···8H8I···8P12A···12H24A···24P
order1222222233444444446···68···88···812···1224···24
size1111333344111133334···41···13···34···44···4

64 irreducible representations

dim111111111111333333
type++++++
imageC1C2C2C3C4C4C6C6C8C12C12C24A4C2xA4C2xA4C4xA4C4xA4C8xA4
kernelA4xC2xC8C8xA4C2xC4xA4C23xC8C4xA4C22xA4C22xC8C23xC4C2xA4C22xC4C24C23C2xC8C8C2xC4C4C22C2
# reps1212224284416121228

Matrix representation of A4xC2xC8 in GL4(F73) generated by

1000
07200
00720
00072
,
10000
01000
00100
00010
,
1000
07200
00720
0001
,
1000
07200
0010
00072
,
1000
0010
0001
0100
G:=sub<GL(4,GF(73))| [1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[10,0,0,0,0,10,0,0,0,0,10,0,0,0,0,10],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,1],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

A4xC2xC8 in GAP, Magma, Sage, TeX

A_4\times C_2\times C_8
% in TeX

G:=Group("A4xC2xC8");
// GroupNames label

G:=SmallGroup(192,1010);
// by ID

G=gap.SmallGroup(192,1010);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,92,80,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<