direct product, metabelian, soluble, monomial
Aliases: A4×M4(2), C24.C12, C8⋊3(C2×A4), (C8×A4)⋊7C2, C4.2(C4×A4), (C4×A4).4C4, (C22×C8)⋊3C6, (C22×C4).C12, C22.6(C4×A4), (C23×C4).2C6, C22⋊(C3×M4(2)), (C22×M4(2))⋊C3, (C22×A4).1C4, C4.13(C22×A4), (C4×A4).23C22, C23.18(C2×C12), C2.9(C2×C4×A4), (C2×C4×A4).8C2, (C2×C4).9(C2×A4), (C2×A4).14(C2×C4), (C22×C4).86(C2×C6), SmallGroup(192,1011)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4×M4(2)
G = < a,b,c,d,e | a2=b2=c3=d8=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d5 >
Subgroups: 224 in 83 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2×C4, C2×C4, C23, C23, C12, A4, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C24, C24, C2×C12, C2×A4, C2×A4, C22×C8, C2×M4(2), C23×C4, C3×M4(2), C4×A4, C22×A4, C22×M4(2), C8×A4, C2×C4×A4, A4×M4(2)
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, A4, C2×C6, M4(2), C2×C12, C2×A4, C3×M4(2), C4×A4, C22×A4, C2×C4×A4, A4×M4(2)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)
(1 10 23)(2 11 24)(3 12 17)(4 13 18)(5 14 19)(6 15 20)(7 16 21)(8 9 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)
G:=sub<Sym(24)| (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)>;
G:=Group( (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24) );
G=PermutationGroup([[(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24)], [(1,10,23),(2,11,24),(3,12,17),(4,13,18),(5,14,19),(6,15,20),(7,16,21),(8,9,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24)]])
G:=TransitiveGroup(24,297);
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 3 | 3 | 6 | 4 | 4 | 1 | 1 | 2 | 3 | 3 | 6 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | ··· | 8 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 6 |
type | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | M4(2) | C3×M4(2) | A4 | C2×A4 | C2×A4 | C4×A4 | C4×A4 | A4×M4(2) |
kernel | A4×M4(2) | C8×A4 | C2×C4×A4 | C22×M4(2) | C4×A4 | C22×A4 | C22×C8 | C23×C4 | C22×C4 | C24 | A4 | C22 | M4(2) | C8 | C2×C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 2 |
Matrix representation of A4×M4(2) ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 46 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 46 |
72 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,72,0,1,0,0,72,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[0,1,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,46,0,0,0,0,0,46],[72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4×M4(2) in GAP, Magma, Sage, TeX
A_4\times M_4(2)
% in TeX
G:=Group("A4xM4(2)");
// GroupNames label
G:=SmallGroup(192,1011);
// by ID
G=gap.SmallGroup(192,1011);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,365,92,80,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations