Copied to
clipboard

G = D12:9Q8order 192 = 26·3

7th semidirect product of D12 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:9Q8, C42.175D6, C6.832+ 1+4, C4:Q8:13S3, C4.19(S3xQ8), C4:C4.220D6, C3:8(D4:3Q8), D6.12(C2xQ8), C12.56(C2xQ8), D6:3Q8:37C2, C4.D12:44C2, (C4xDic6):53C2, (C4xD12).27C2, (C2xQ8).111D6, C6.50(C22xQ8), (C2xC6).274C24, C4.Dic6:44C2, Dic3:5D4.14C2, C12.137(C4oD4), C2.87(D4:6D6), (C4xC12).215C22, (C2xC12).107C23, D6:C4.153C22, C4.40(Q8:3S3), (C6xQ8).141C22, (C2xD12).273C22, Dic3:C4.62C22, C4:Dic3.253C22, C22.295(S3xC23), (C22xS3).235C23, (C2xDic6).303C22, (C2xDic3).145C23, (C4xDic3).163C22, (S3xC4:C4):45C2, C2.33(C2xS3xQ8), (C3xC4:Q8):16C2, C6.122(C2xC4oD4), (S3xC2xC4).147C22, C2.30(C2xQ8:3S3), (C3xC4:C4).217C22, (C2xC4).220(C22xS3), SmallGroup(192,1289)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:9Q8
C1C3C6C2xC6C22xS3C2xD12C4xD12 — D12:9Q8
C3C2xC6 — D12:9Q8
C1C22C4:Q8

Generators and relations for D12:9Q8
 G = < a,b,c,d | a12=b2=c4=1, d2=c2, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a6b, dcd-1=c-1 >

Subgroups: 544 in 228 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, Dic6, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C2xC4:C4, C4xD4, C4xQ8, C22:Q8, C42.C2, C4:Q8, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C6xQ8, D4:3Q8, C4xDic6, C4xD12, C4.Dic6, S3xC4:C4, Dic3:5D4, C4.D12, D6:3Q8, C3xC4:Q8, D12:9Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C4oD4, C24, C22xS3, C22xQ8, C2xC4oD4, 2+ 1+4, S3xQ8, Q8:3S3, S3xC23, D4:3Q8, D4:6D6, C2xS3xQ8, C2xQ8:3S3, D12:9Q8

Smallest permutation representation of D12:9Q8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 17)(14 16)(18 24)(19 23)(20 22)(25 33)(26 32)(27 31)(28 30)(34 36)(37 41)(38 40)(42 48)(43 47)(44 46)(49 59)(50 58)(51 57)(52 56)(53 55)(61 65)(62 64)(66 72)(67 71)(68 70)(74 84)(75 83)(76 82)(77 81)(78 80)(85 95)(86 94)(87 93)(88 92)(89 91)
(1 25 38 65)(2 32 39 72)(3 27 40 67)(4 34 41 62)(5 29 42 69)(6 36 43 64)(7 31 44 71)(8 26 45 66)(9 33 46 61)(10 28 47 68)(11 35 48 63)(12 30 37 70)(13 55 77 85)(14 50 78 92)(15 57 79 87)(16 52 80 94)(17 59 81 89)(18 54 82 96)(19 49 83 91)(20 56 84 86)(21 51 73 93)(22 58 74 88)(23 53 75 95)(24 60 76 90)
(1 86 38 56)(2 87 39 57)(3 88 40 58)(4 89 41 59)(5 90 42 60)(6 91 43 49)(7 92 44 50)(8 93 45 51)(9 94 46 52)(10 95 47 53)(11 96 48 54)(12 85 37 55)(13 30 77 70)(14 31 78 71)(15 32 79 72)(16 33 80 61)(17 34 81 62)(18 35 82 63)(19 36 83 64)(20 25 84 65)(21 26 73 66)(22 27 74 67)(23 28 75 68)(24 29 76 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,41)(38,40)(42,48)(43,47)(44,46)(49,59)(50,58)(51,57)(52,56)(53,55)(61,65)(62,64)(66,72)(67,71)(68,70)(74,84)(75,83)(76,82)(77,81)(78,80)(85,95)(86,94)(87,93)(88,92)(89,91), (1,25,38,65)(2,32,39,72)(3,27,40,67)(4,34,41,62)(5,29,42,69)(6,36,43,64)(7,31,44,71)(8,26,45,66)(9,33,46,61)(10,28,47,68)(11,35,48,63)(12,30,37,70)(13,55,77,85)(14,50,78,92)(15,57,79,87)(16,52,80,94)(17,59,81,89)(18,54,82,96)(19,49,83,91)(20,56,84,86)(21,51,73,93)(22,58,74,88)(23,53,75,95)(24,60,76,90), (1,86,38,56)(2,87,39,57)(3,88,40,58)(4,89,41,59)(5,90,42,60)(6,91,43,49)(7,92,44,50)(8,93,45,51)(9,94,46,52)(10,95,47,53)(11,96,48,54)(12,85,37,55)(13,30,77,70)(14,31,78,71)(15,32,79,72)(16,33,80,61)(17,34,81,62)(18,35,82,63)(19,36,83,64)(20,25,84,65)(21,26,73,66)(22,27,74,67)(23,28,75,68)(24,29,76,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,41)(38,40)(42,48)(43,47)(44,46)(49,59)(50,58)(51,57)(52,56)(53,55)(61,65)(62,64)(66,72)(67,71)(68,70)(74,84)(75,83)(76,82)(77,81)(78,80)(85,95)(86,94)(87,93)(88,92)(89,91), (1,25,38,65)(2,32,39,72)(3,27,40,67)(4,34,41,62)(5,29,42,69)(6,36,43,64)(7,31,44,71)(8,26,45,66)(9,33,46,61)(10,28,47,68)(11,35,48,63)(12,30,37,70)(13,55,77,85)(14,50,78,92)(15,57,79,87)(16,52,80,94)(17,59,81,89)(18,54,82,96)(19,49,83,91)(20,56,84,86)(21,51,73,93)(22,58,74,88)(23,53,75,95)(24,60,76,90), (1,86,38,56)(2,87,39,57)(3,88,40,58)(4,89,41,59)(5,90,42,60)(6,91,43,49)(7,92,44,50)(8,93,45,51)(9,94,46,52)(10,95,47,53)(11,96,48,54)(12,85,37,55)(13,30,77,70)(14,31,78,71)(15,32,79,72)(16,33,80,61)(17,34,81,62)(18,35,82,63)(19,36,83,64)(20,25,84,65)(21,26,73,66)(22,27,74,67)(23,28,75,68)(24,29,76,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,17),(14,16),(18,24),(19,23),(20,22),(25,33),(26,32),(27,31),(28,30),(34,36),(37,41),(38,40),(42,48),(43,47),(44,46),(49,59),(50,58),(51,57),(52,56),(53,55),(61,65),(62,64),(66,72),(67,71),(68,70),(74,84),(75,83),(76,82),(77,81),(78,80),(85,95),(86,94),(87,93),(88,92),(89,91)], [(1,25,38,65),(2,32,39,72),(3,27,40,67),(4,34,41,62),(5,29,42,69),(6,36,43,64),(7,31,44,71),(8,26,45,66),(9,33,46,61),(10,28,47,68),(11,35,48,63),(12,30,37,70),(13,55,77,85),(14,50,78,92),(15,57,79,87),(16,52,80,94),(17,59,81,89),(18,54,82,96),(19,49,83,91),(20,56,84,86),(21,51,73,93),(22,58,74,88),(23,53,75,95),(24,60,76,90)], [(1,86,38,56),(2,87,39,57),(3,88,40,58),(4,89,41,59),(5,90,42,60),(6,91,43,49),(7,92,44,50),(8,93,45,51),(9,94,46,52),(10,95,47,53),(11,96,48,54),(12,85,37,55),(13,30,77,70),(14,31,78,71),(15,32,79,72),(16,33,80,61),(17,34,81,62),(18,35,82,63),(19,36,83,64),(20,25,84,65),(21,26,73,66),(22,27,74,67),(23,28,75,68),(24,29,76,69)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q6A6B6C12A···12F12G12H12I12J
order12222222344444···44444444466612···1212121212
size11116666222224···46666121212122224···48888

39 irreducible representations

dim1111111112222224444
type++++++++++-++++-+
imageC1C2C2C2C2C2C2C2C2S3Q8D6D6D6C4oD42+ 1+4S3xQ8Q8:3S3D4:6D6
kernelD12:9Q8C4xDic6C4xD12C4.Dic6S3xC4:C4Dic3:5D4C4.D12D6:3Q8C3xC4:Q8C4:Q8D12C42C4:C4C2xQ8C12C6C4C4C2
# reps1112222411414241222

Matrix representation of D12:9Q8 in GL6(F13)

8100000
050000
001100
0012000
000010
000001
,
1200000
1210000
00121200
000100
000010
000001
,
1110000
1120000
001000
000100
000001
0000120
,
8100000
050000
001000
000100
000043
000039

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,10,5,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[8,0,0,0,0,0,10,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,3,9] >;

D12:9Q8 in GAP, Magma, Sage, TeX

D_{12}\rtimes_9Q_8
% in TeX

G:=Group("D12:9Q8");
// GroupNames label

G:=SmallGroup(192,1289);
// by ID

G=gap.SmallGroup(192,1289);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,232,100,570,185,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^6*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<