Extensions 1→N→G→Q→1 with N=C4×D12 and Q=C2

Direct product G=N×Q with N=C4×D12 and Q=C2
dρLabelID
C2×C4×D1296C2xC4xD12192,1032

Semidirect products G=N:Q with N=C4×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D12)⋊1C2 = C4×D24φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):1C2192,251
(C4×D12)⋊2C2 = D24⋊C4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):2C2192,270
(C4×D12)⋊3C2 = C42.276D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):3C2192,1036
(C4×D12)⋊4C2 = C42.277D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):4C2192,1038
(C4×D12)⋊5C2 = C429D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):5C2192,1080
(C4×D12)⋊6C2 = C42.91D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):6C2192,1082
(C4×D12)⋊7C2 = C4210D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):7C2192,1083
(C4×D12)⋊8C2 = C4212D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):8C2192,1086
(C4×D12)⋊9C2 = C42.93D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):9C2192,1087
(C4×D12)⋊10C2 = C42.95D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):10C2192,1089
(C4×D12)⋊11C2 = C42.99D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):11C2192,1093
(C4×D12)⋊12C2 = C42.100D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):12C2192,1094
(C4×D12)⋊13C2 = C4225D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):13C2192,1263
(C4×D12)⋊14C2 = C4226D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):14C2192,1264
(C4×D12)⋊15C2 = C42.161D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):15C2192,1266
(C4×D12)⋊16C2 = C42.163D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):16C2192,1268
(C4×D12)⋊17C2 = C4⋊D24φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):17C2192,402
(C4×D12)⋊18C2 = D12.19D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):18C2192,403
(C4×D12)⋊19C2 = C4×D4⋊S3φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):19C2192,572
(C4×D12)⋊20C2 = C42.48D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):20C2192,573
(C4×D12)⋊21C2 = D12.23D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):21C2192,616
(C4×D12)⋊22C2 = C122D8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):22C2192,631
(C4×D12)⋊23C2 = C4×S3×D4φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):23C2192,1103
(C4×D12)⋊24C2 = C4213D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):24C2192,1104
(C4×D12)⋊25C2 = C4214D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):25C2192,1106
(C4×D12)⋊26C2 = C42.228D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):26C2192,1107
(C4×D12)⋊27C2 = D4×D12φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):27C2192,1108
(C4×D12)⋊28C2 = D1223D4φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):28C2192,1109
(C4×D12)⋊29C2 = D1224D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):29C2192,1110
(C4×D12)⋊30C2 = D45D12φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):30C2192,1113
(C4×D12)⋊31C2 = D46D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):31C2192,1114
(C4×D12)⋊32C2 = C42.113D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):32C2192,1117
(C4×D12)⋊33C2 = C42.116D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):33C2192,1121
(C4×D12)⋊34C2 = C42.117D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):34C2192,1122
(C4×D12)⋊35C2 = C42.119D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):35C2192,1124
(C4×D12)⋊36C2 = C4×Q83S3φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):36C2192,1132
(C4×D12)⋊37C2 = C42.126D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):37C2192,1133
(C4×D12)⋊38C2 = Q86D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):38C2192,1135
(C4×D12)⋊39C2 = Q87D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):39C2192,1136
(C4×D12)⋊40C2 = C42.131D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):40C2192,1139
(C4×D12)⋊41C2 = C42.133D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):41C2192,1141
(C4×D12)⋊42C2 = C42.136D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):42C2192,1144
(C4×D12)⋊43C2 = D1210D4φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):43C2192,1235
(C4×D12)⋊44C2 = Dic610D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):44C2192,1236
(C4×D12)⋊45C2 = C4222D6φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):45C2192,1237
(C4×D12)⋊46C2 = C42.143D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):46C2192,1240
(C4×D12)⋊47C2 = C42.150D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):47C2192,1251
(C4×D12)⋊48C2 = C42.153D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):48C2192,1254
(C4×D12)⋊49C2 = D1211D4φ: C2/C1C2 ⊆ Out C4×D1248(C4xD12):49C2192,1276
(C4×D12)⋊50C2 = Dic611D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):50C2192,1277
(C4×D12)⋊51C2 = D1212D4φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):51C2192,1285
(C4×D12)⋊52C2 = C42.179D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12):52C2192,1293
(C4×D12)⋊53C2 = C4×C4○D12φ: trivial image96(C4xD12):53C2192,1033

Non-split extensions G=N.Q with N=C4×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D12).1C2 = C4.17D24φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).1C2192,18
(C4×D12).2C2 = C86D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).2C2192,247
(C4×D12).3C2 = C4×C24⋊C2φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).3C2192,250
(C4×D12).4C2 = C89D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).4C2192,265
(C4×D12).5C2 = C42.16D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).5C2192,269
(C4×D12).6C2 = D122C8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).6C2192,42
(C4×D12).7C2 = D12⋊C8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).7C2192,393
(C4×D12).8C2 = D63M4(2)φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).8C2192,395
(C4×D12).9C2 = C122M4(2)φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).9C2192,397
(C4×D12).10C2 = C12⋊SD16φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).10C2192,400
(C4×D12).11C2 = D123Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).11C2192,401
(C4×D12).12C2 = D124Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).12C2192,405
(C4×D12).13C2 = D12.3Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).13C2192,406
(C4×D12).14C2 = C4×Q82S3φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).14C2192,584
(C4×D12).15C2 = C42.56D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).15C2192,585
(C4×D12).16C2 = D12.4Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).16C2192,625
(C4×D12).17C2 = C125SD16φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).17C2192,642
(C4×D12).18C2 = D125Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).18C2192,643
(C4×D12).19C2 = D126Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).19C2192,646
(C4×D12).20C2 = Q8×D12φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).20C2192,1134
(C4×D12).21C2 = D1210Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).21C2192,1138
(C4×D12).22C2 = C42.132D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).22C2192,1140
(C4×D12).23C2 = C42.135D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).23C2192,1143
(C4×D12).24C2 = D127Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).24C2192,1249
(C4×D12).25C2 = C42.152D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).25C2192,1253
(C4×D12).26C2 = D128Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).26C2192,1286
(C4×D12).27C2 = D129Q8φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).27C2192,1289
(C4×D12).28C2 = C42.177D6φ: C2/C1C2 ⊆ Out C4×D1296(C4xD12).28C2192,1291
(C4×D12).29C2 = C8×D12φ: trivial image96(C4xD12).29C2192,245

׿
×
𝔽