Copied to
clipboard

G = Q8.7S4order 192 = 26·3

2nd non-split extension by Q8 of S4 acting through Inn(Q8)

non-abelian, soluble

Aliases: Q8.7S4, 2+ 1+4:3S3, GL2(F3):4C22, CSU2(F3):7C22, SL2(F3).7C23, C4.13(C2xS4), C4oD4.6D6, Q8.A4:3C2, C4.3S4:4C2, C4.6S4:2C2, C4.A4:1C22, C2.18(C22xS4), Q8.8(C22xS3), SmallGroup(192,1484)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — Q8.7S4
C1C2Q8SL2(F3)GL2(F3)C4.6S4 — Q8.7S4
SL2(F3) — Q8.7S4
C1C2Q8

Generators and relations for Q8.7S4
 G = < a,b,c,d,e,f | a4=e3=f2=1, b2=c2=d2=a2, bab-1=faf=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, dcd-1=a2c, ece-1=a2cd, fcf=cd, ede-1=c, fdf=a2d, fef=e-1 >

Subgroups: 599 in 146 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2xC4, D4, Q8, Q8, C23, Dic3, C12, D6, C2xC8, M4(2), D8, SD16, Q16, C2xD4, C4oD4, C4oD4, SL2(F3), C4xS3, D12, C3xQ8, C8oD4, C2xD8, C4oD8, C8:C22, 2+ 1+4, 2+ 1+4, CSU2(F3), GL2(F3), C4.A4, Q8:3S3, D4oD8, C4.6S4, C4.3S4, Q8.A4, Q8.7S4
Quotients: C1, C2, C22, S3, C23, D6, S4, C22xS3, C2xS4, C22xS4, Q8.7S4

Character table of Q8.7S4

 class 12A2B2C2D2E2F2G34A4B4C4D4E68A8B8C8D8E12A12B12C
 size 116661212128222612866121212161616
ρ111111111111111111111111    trivial
ρ211-1-11-1-1111-1-111111-1-11-1-11    linear of order 2
ρ311111-1-1-111111-11-1-1-1-1-1111    linear of order 2
ρ411-1-1111-111-1-11-11-1-111-1-1-11    linear of order 2
ρ511-11-11-111-1-111-11-1-11-111-1-1    linear of order 2
ρ6111-1-1-1111-11-11-11-1-1-111-11-1    linear of order 2
ρ711-11-1-11-11-1-1111111-11-11-1-1    linear of order 2
ρ8111-1-11-1-11-11-1111111-1-1-11-1    linear of order 2
ρ9222-2-2000-1-22-220-1000001-11    orthogonal lifted from D6
ρ1022-2-22000-12-2-220-10000011-1    orthogonal lifted from D6
ρ1122-22-2000-1-2-2220-100000-111    orthogonal lifted from D6
ρ1222222000-122220-100000-1-1-1    orthogonal lifted from S3
ρ13331-111-110-3-33-1-1011-11-1000    orthogonal lifted from C2xS4
ρ1433-1-1-11110333-110-1-1-1-1-1000    orthogonal lifted from S4
ρ15331-11-11-10-3-33-110-1-11-11000    orthogonal lifted from C2xS4
ρ1633-1-1-1-1-1-10333-1-1011111000    orthogonal lifted from S4
ρ173311-111-103-3-3-1-1011-1-11000    orthogonal lifted from C2xS4
ρ1833-1111-1-10-33-3-110-1-1-111000    orthogonal lifted from C2xS4
ρ193311-1-1-1103-3-3-110-1-111-1000    orthogonal lifted from C2xS4
ρ2033-111-1110-33-3-1-10111-1-1000    orthogonal lifted from C2xS4
ρ214-4000000-2000002-2222000000    orthogonal faithful
ρ224-4000000-200000222-22000000    orthogonal faithful
ρ238-8000000200000-200000000    orthogonal faithful, Schur index 2

Smallest permutation representation of Q8.7S4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 24 3 22)(2 23 4 21)(5 27 7 25)(6 26 8 28)(9 20 11 18)(10 19 12 17)(13 29 15 31)(14 32 16 30)
(1 8 3 6)(2 5 4 7)(9 31 11 29)(10 32 12 30)(13 18 15 20)(14 19 16 17)(21 25 23 27)(22 26 24 28)
(1 18 3 20)(2 19 4 17)(5 14 7 16)(6 15 8 13)(9 22 11 24)(10 23 12 21)(25 30 27 32)(26 31 28 29)
(5 19 16)(6 20 13)(7 17 14)(8 18 15)(9 31 28)(10 32 25)(11 29 26)(12 30 27)
(2 4)(5 16)(6 15)(7 14)(8 13)(9 11)(18 20)(21 23)(25 32)(26 31)(27 30)(28 29)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,24,3,22)(2,23,4,21)(5,27,7,25)(6,26,8,28)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30), (1,8,3,6)(2,5,4,7)(9,31,11,29)(10,32,12,30)(13,18,15,20)(14,19,16,17)(21,25,23,27)(22,26,24,28), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,22,11,24)(10,23,12,21)(25,30,27,32)(26,31,28,29), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,31,28)(10,32,25)(11,29,26)(12,30,27), (2,4)(5,16)(6,15)(7,14)(8,13)(9,11)(18,20)(21,23)(25,32)(26,31)(27,30)(28,29)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,24,3,22)(2,23,4,21)(5,27,7,25)(6,26,8,28)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30), (1,8,3,6)(2,5,4,7)(9,31,11,29)(10,32,12,30)(13,18,15,20)(14,19,16,17)(21,25,23,27)(22,26,24,28), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,22,11,24)(10,23,12,21)(25,30,27,32)(26,31,28,29), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,31,28)(10,32,25)(11,29,26)(12,30,27), (2,4)(5,16)(6,15)(7,14)(8,13)(9,11)(18,20)(21,23)(25,32)(26,31)(27,30)(28,29) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,24,3,22),(2,23,4,21),(5,27,7,25),(6,26,8,28),(9,20,11,18),(10,19,12,17),(13,29,15,31),(14,32,16,30)], [(1,8,3,6),(2,5,4,7),(9,31,11,29),(10,32,12,30),(13,18,15,20),(14,19,16,17),(21,25,23,27),(22,26,24,28)], [(1,18,3,20),(2,19,4,17),(5,14,7,16),(6,15,8,13),(9,22,11,24),(10,23,12,21),(25,30,27,32),(26,31,28,29)], [(5,19,16),(6,20,13),(7,17,14),(8,18,15),(9,31,28),(10,32,25),(11,29,26),(12,30,27)], [(2,4),(5,16),(6,15),(7,14),(8,13),(9,11),(18,20),(21,23),(25,32),(26,31),(27,30),(28,29)]])

Matrix representation of Q8.7S4 in GL4(F7) generated by

3143
5305
6601
1431
,
6364
5316
2263
5646
,
5132
3566
2263
0655
,
0215
4465
0511
1332
,
1226
1044
4663
6235
,
0230
4604
0302
1541
G:=sub<GL(4,GF(7))| [3,5,6,1,1,3,6,4,4,0,0,3,3,5,1,1],[6,5,2,5,3,3,2,6,6,1,6,4,4,6,3,6],[5,3,2,0,1,5,2,6,3,6,6,5,2,6,3,5],[0,4,0,1,2,4,5,3,1,6,1,3,5,5,1,2],[1,1,4,6,2,0,6,2,2,4,6,3,6,4,3,5],[0,4,0,1,2,6,3,5,3,0,0,4,0,4,2,1] >;

Q8.7S4 in GAP, Magma, Sage, TeX

Q_8._7S_4
% in TeX

G:=Group("Q8.7S4");
// GroupNames label

G:=SmallGroup(192,1484);
// by ID

G=gap.SmallGroup(192,1484);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,680,2102,1059,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=e^3=f^2=1,b^2=c^2=d^2=a^2,b*a*b^-1=f*a*f=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=a^2*c,e*c*e^-1=a^2*c*d,f*c*f=c*d,e*d*e^-1=c,f*d*f=a^2*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of Q8.7S4 in TeX

׿
x
:
Z
F
o
wr
Q
<