Copied to
clipboard

G = C2×C25⋊C4order 200 = 23·52

Direct product of C2 and C25⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C25⋊C4, C50⋊C4, D25⋊C4, D50.C2, C10.2F5, D25.C22, C25⋊(C2×C4), C5.(C2×F5), SmallGroup(200,12)

Series: Derived Chief Lower central Upper central

C1C25 — C2×C25⋊C4
C1C5C25D25C25⋊C4 — C2×C25⋊C4
C25 — C2×C25⋊C4
C1C2

Generators and relations for C2×C25⋊C4
 G = < a,b,c | a2=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >

25C2
25C2
25C4
25C22
25C4
5D5
5D5
25C2×C4
5F5
5D10
5F5
5C2×F5

Character table of C2×C25⋊C4

 class 12A2B2C4A4B4C4D51025A25B25C25D25E50A50B50C50D50E
 size 11252525252525444444444444
ρ111111111111111111111    trivial
ρ21-11-11-11-11-111111-1-1-1-1-1    linear of order 2
ρ31111-1-1-1-1111111111111    linear of order 2
ρ41-11-1-11-111-111111-1-1-1-1-1    linear of order 2
ρ51-1-11i-i-ii1-111111-1-1-1-1-1    linear of order 4
ρ611-1-1ii-i-i111111111111    linear of order 4
ρ71-1-11-iii-i1-111111-1-1-1-1-1    linear of order 4
ρ811-1-1-i-iii111111111111    linear of order 4
ρ94-40000004-4-1-1-1-1-111111    orthogonal lifted from C2×F5
ρ104400000044-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ1144000000-1-1ζ25192517258256ζ251625132512259ζ25222521254253ζ2524251825725ζ252325142511252ζ25192517258256ζ252325142511252ζ251625132512259ζ25222521254253ζ2524251825725    orthogonal lifted from C25⋊C4
ρ124-4000000-11ζ2524251825725ζ252325142511252ζ251625132512259ζ25222521254253ζ2519251725825625242518257252519251725825625232514251125225162513251225925222521254253    orthogonal faithful
ρ1344000000-1-1ζ252325142511252ζ25222521254253ζ2524251825725ζ25192517258256ζ251625132512259ζ252325142511252ζ251625132512259ζ25222521254253ζ2524251825725ζ25192517258256    orthogonal lifted from C25⋊C4
ρ1444000000-1-1ζ25222521254253ζ25192517258256ζ252325142511252ζ251625132512259ζ2524251825725ζ25222521254253ζ2524251825725ζ25192517258256ζ252325142511252ζ251625132512259    orthogonal lifted from C25⋊C4
ρ154-4000000-11ζ25222521254253ζ25192517258256ζ252325142511252ζ251625132512259ζ252425182572525222521254253252425182572525192517258256252325142511252251625132512259    orthogonal faithful
ρ1644000000-1-1ζ2524251825725ζ252325142511252ζ251625132512259ζ25222521254253ζ25192517258256ζ2524251825725ζ25192517258256ζ252325142511252ζ251625132512259ζ25222521254253    orthogonal lifted from C25⋊C4
ρ174-4000000-11ζ25192517258256ζ251625132512259ζ25222521254253ζ2524251825725ζ25232514251125225192517258256252325142511252251625132512259252225212542532524251825725    orthogonal faithful
ρ184-4000000-11ζ251625132512259ζ2524251825725ζ25192517258256ζ252325142511252ζ2522252125425325162513251225925222521254253252425182572525192517258256252325142511252    orthogonal faithful
ρ194-4000000-11ζ252325142511252ζ25222521254253ζ2524251825725ζ25192517258256ζ25162513251225925232514251125225162513251225925222521254253252425182572525192517258256    orthogonal faithful
ρ2044000000-1-1ζ251625132512259ζ2524251825725ζ25192517258256ζ252325142511252ζ25222521254253ζ251625132512259ζ25222521254253ζ2524251825725ζ25192517258256ζ252325142511252    orthogonal lifted from C25⋊C4

Smallest permutation representation of C2×C25⋊C4
On 50 points
Generators in S50
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(2 8 25 19)(3 15 24 12)(4 22 23 5)(6 11 21 16)(7 18 20 9)(10 14 17 13)(26 48 27 30)(28 37 50 41)(29 44 49 34)(31 33 47 45)(32 40 46 38)(35 36 43 42)

G:=sub<Sym(50)| (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42)>;

G:=Group( (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42) );

G=PermutationGroup([[(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(2,8,25,19),(3,15,24,12),(4,22,23,5),(6,11,21,16),(7,18,20,9),(10,14,17,13),(26,48,27,30),(28,37,50,41),(29,44,49,34),(31,33,47,45),(32,40,46,38),(35,36,43,42)]])

C2×C25⋊C4 is a maximal subgroup of   C100⋊C4  D25.D4
C2×C25⋊C4 is a maximal quotient of   D25⋊C8  C100.C4  C100⋊C4  C25⋊M4(2)  D25.D4

Matrix representation of C2×C25⋊C4 in GL4(𝔽7) generated by

6000
0600
0060
0006
,
4212
3040
0500
6056
,
1323
4322
0220
0421
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[4,3,0,6,2,0,5,0,1,4,0,5,2,0,0,6],[1,4,0,0,3,3,2,4,2,2,2,2,3,2,0,1] >;

C2×C25⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{25}\rtimes C_4
% in TeX

G:=Group("C2xC25:C4");
// GroupNames label

G:=SmallGroup(200,12);
// by ID

G=gap.SmallGroup(200,12);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,20,1123,973,118,2004,1014]);
// Polycyclic

G:=Group<a,b,c|a^2=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations

Export

Subgroup lattice of C2×C25⋊C4 in TeX
Character table of C2×C25⋊C4 in TeX

׿
×
𝔽