direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C25⋊C4, C50⋊C4, D25⋊C4, D50.C2, C10.2F5, D25.C22, C25⋊(C2×C4), C5.(C2×F5), SmallGroup(200,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C25 — D25 — C25⋊C4 — C2×C25⋊C4 |
C25 — C2×C25⋊C4 |
Generators and relations for C2×C25⋊C4
G = < a,b,c | a2=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >
Character table of C2×C25⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5 | 10 | 25A | 25B | 25C | 25D | 25E | 50A | 50B | 50C | 50D | 50E | |
size | 1 | 1 | 25 | 25 | 25 | 25 | 25 | 25 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ10 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ11 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2519+ζ2517+ζ258+ζ256 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | orthogonal lifted from C25⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | ζ2524+ζ2518+ζ257+ζ25 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2519+ζ2517+ζ258+ζ256 | -ζ2524-ζ2518-ζ257-ζ25 | -ζ2519-ζ2517-ζ258-ζ256 | -ζ2523-ζ2514-ζ2511-ζ252 | -ζ2516-ζ2513-ζ2512-ζ259 | -ζ2522-ζ2521-ζ254-ζ253 | orthogonal faithful |
ρ13 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | orthogonal lifted from C25⋊C4 |
ρ14 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2522+ζ2521+ζ254+ζ253 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2524+ζ2518+ζ257+ζ25 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | orthogonal lifted from C25⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | ζ2522+ζ2521+ζ254+ζ253 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2524+ζ2518+ζ257+ζ25 | -ζ2522-ζ2521-ζ254-ζ253 | -ζ2524-ζ2518-ζ257-ζ25 | -ζ2519-ζ2517-ζ258-ζ256 | -ζ2523-ζ2514-ζ2511-ζ252 | -ζ2516-ζ2513-ζ2512-ζ259 | orthogonal faithful |
ρ16 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2524+ζ2518+ζ257+ζ25 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2519+ζ2517+ζ258+ζ256 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | orthogonal lifted from C25⋊C4 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | ζ2519+ζ2517+ζ258+ζ256 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2523+ζ2514+ζ2511+ζ252 | -ζ2519-ζ2517-ζ258-ζ256 | -ζ2523-ζ2514-ζ2511-ζ252 | -ζ2516-ζ2513-ζ2512-ζ259 | -ζ2522-ζ2521-ζ254-ζ253 | -ζ2524-ζ2518-ζ257-ζ25 | orthogonal faithful |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2522+ζ2521+ζ254+ζ253 | -ζ2516-ζ2513-ζ2512-ζ259 | -ζ2522-ζ2521-ζ254-ζ253 | -ζ2524-ζ2518-ζ257-ζ25 | -ζ2519-ζ2517-ζ258-ζ256 | -ζ2523-ζ2514-ζ2511-ζ252 | orthogonal faithful |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2516+ζ2513+ζ2512+ζ259 | -ζ2523-ζ2514-ζ2511-ζ252 | -ζ2516-ζ2513-ζ2512-ζ259 | -ζ2522-ζ2521-ζ254-ζ253 | -ζ2524-ζ2518-ζ257-ζ25 | -ζ2519-ζ2517-ζ258-ζ256 | orthogonal faithful |
ρ20 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2522+ζ2521+ζ254+ζ253 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | orthogonal lifted from C25⋊C4 |
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(2 8 25 19)(3 15 24 12)(4 22 23 5)(6 11 21 16)(7 18 20 9)(10 14 17 13)(26 48 27 30)(28 37 50 41)(29 44 49 34)(31 33 47 45)(32 40 46 38)(35 36 43 42)
G:=sub<Sym(50)| (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42)>;
G:=Group( (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42) );
G=PermutationGroup([[(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(2,8,25,19),(3,15,24,12),(4,22,23,5),(6,11,21,16),(7,18,20,9),(10,14,17,13),(26,48,27,30),(28,37,50,41),(29,44,49,34),(31,33,47,45),(32,40,46,38),(35,36,43,42)]])
C2×C25⋊C4 is a maximal subgroup of
C100⋊C4 D25.D4
C2×C25⋊C4 is a maximal quotient of D25⋊C8 C100.C4 C100⋊C4 C25⋊M4(2) D25.D4
Matrix representation of C2×C25⋊C4 ►in GL4(𝔽7) generated by
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
4 | 2 | 1 | 2 |
3 | 0 | 4 | 0 |
0 | 5 | 0 | 0 |
6 | 0 | 5 | 6 |
1 | 3 | 2 | 3 |
4 | 3 | 2 | 2 |
0 | 2 | 2 | 0 |
0 | 4 | 2 | 1 |
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[4,3,0,6,2,0,5,0,1,4,0,5,2,0,0,6],[1,4,0,0,3,3,2,4,2,2,2,2,3,2,0,1] >;
C2×C25⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_{25}\rtimes C_4
% in TeX
G:=Group("C2xC25:C4");
// GroupNames label
G:=SmallGroup(200,12);
// by ID
G=gap.SmallGroup(200,12);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,20,1123,973,118,2004,1014]);
// Polycyclic
G:=Group<a,b,c|a^2=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations
Export
Subgroup lattice of C2×C25⋊C4 in TeX
Character table of C2×C25⋊C4 in TeX