extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1D6 = He3⋊2Q8 | φ: D6/C1 → D6 ⊆ Aut C3×C6 | 72 | 6- | (C3xC6).1D6 | 216,33 |
(C3×C6).2D6 = C6.S32 | φ: D6/C1 → D6 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).2D6 | 216,34 |
(C3×C6).3D6 = He3⋊2D4 | φ: D6/C1 → D6 ⊆ Aut C3×C6 | 36 | 6+ | (C3xC6).3D6 | 216,35 |
(C3×C6).4D6 = He3⋊(C2×C4) | φ: D6/C1 → D6 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).4D6 | 216,36 |
(C3×C6).5D6 = He3⋊3D4 | φ: D6/C1 → D6 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).5D6 | 216,37 |
(C3×C6).6D6 = He3⋊3Q8 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | 6- | (C3xC6).6D6 | 216,49 |
(C3×C6).7D6 = C4×C32⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).7D6 | 216,50 |
(C3×C6).8D6 = He3⋊4D4 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6+ | (C3xC6).8D6 | 216,51 |
(C3×C6).9D6 = C36.C6 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | 6- | (C3xC6).9D6 | 216,52 |
(C3×C6).10D6 = C4×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).10D6 | 216,53 |
(C3×C6).11D6 = D36⋊C3 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6+ | (C3xC6).11D6 | 216,54 |
(C3×C6).12D6 = C2×C32⋊C12 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).12D6 | 216,59 |
(C3×C6).13D6 = He3⋊6D4 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).13D6 | 216,60 |
(C3×C6).14D6 = C2×C9⋊C12 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).14D6 | 216,61 |
(C3×C6).15D6 = Dic9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).15D6 | 216,62 |
(C3×C6).16D6 = He3⋊4Q8 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).16D6 | 216,66 |
(C3×C6).17D6 = C4×He3⋊C2 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).17D6 | 216,67 |
(C3×C6).18D6 = He3⋊5D4 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).18D6 | 216,68 |
(C3×C6).19D6 = C2×He3⋊3C4 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).19D6 | 216,71 |
(C3×C6).20D6 = He3⋊7D4 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).20D6 | 216,72 |
(C3×C6).21D6 = C22×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C6 | 36 | | (C3xC6).21D6 | 216,111 |
(C3×C6).22D6 = C9⋊Dic6 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | 4- | (C3xC6).22D6 | 216,26 |
(C3×C6).23D6 = Dic3×D9 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | 4- | (C3xC6).23D6 | 216,27 |
(C3×C6).24D6 = C18.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | 4+ | (C3xC6).24D6 | 216,28 |
(C3×C6).25D6 = C3⋊D36 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | 4+ | (C3xC6).25D6 | 216,29 |
(C3×C6).26D6 = S3×Dic9 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | 4- | (C3xC6).26D6 | 216,30 |
(C3×C6).27D6 = D6⋊D9 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | 4- | (C3xC6).27D6 | 216,31 |
(C3×C6).28D6 = C9⋊D12 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | 4+ | (C3xC6).28D6 | 216,32 |
(C3×C6).29D6 = C2×S3×D9 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | 4+ | (C3xC6).29D6 | 216,101 |
(C3×C6).30D6 = C33⋊8(C2×C4) | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | | (C3xC6).30D6 | 216,126 |
(C3×C6).31D6 = C33⋊6D4 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).31D6 | 216,127 |
(C3×C6).32D6 = C33⋊7D4 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | | (C3xC6).32D6 | 216,128 |
(C3×C6).33D6 = C33⋊8D4 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 36 | | (C3xC6).33D6 | 216,129 |
(C3×C6).34D6 = C33⋊4Q8 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).34D6 | 216,130 |
(C3×C6).35D6 = C33⋊9(C2×C4) | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).35D6 | 216,131 |
(C3×C6).36D6 = C33⋊9D4 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).36D6 | 216,132 |
(C3×C6).37D6 = C33⋊5Q8 | φ: D6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).37D6 | 216,133 |
(C3×C6).38D6 = C3×S3×Dic3 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).38D6 | 216,119 |
(C3×C6).39D6 = C3×C6.D6 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).39D6 | 216,120 |
(C3×C6).40D6 = C3×D6⋊S3 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).40D6 | 216,121 |
(C3×C6).41D6 = C3×C3⋊D12 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).41D6 | 216,122 |
(C3×C6).42D6 = C3×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).42D6 | 216,123 |
(C3×C6).43D6 = S3×C3⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).43D6 | 216,124 |
(C3×C6).44D6 = Dic3×C3⋊S3 | φ: D6/S3 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).44D6 | 216,125 |
(C3×C6).45D6 = C3×Dic18 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).45D6 | 216,43 |
(C3×C6).46D6 = C12×D9 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).46D6 | 216,45 |
(C3×C6).47D6 = C3×D36 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).47D6 | 216,46 |
(C3×C6).48D6 = C6×Dic9 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).48D6 | 216,55 |
(C3×C6).49D6 = C3×C9⋊D4 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).49D6 | 216,57 |
(C3×C6).50D6 = C12.D9 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).50D6 | 216,63 |
(C3×C6).51D6 = C4×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).51D6 | 216,64 |
(C3×C6).52D6 = C36⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).52D6 | 216,65 |
(C3×C6).53D6 = C2×C9⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).53D6 | 216,69 |
(C3×C6).54D6 = C6.D18 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).54D6 | 216,70 |
(C3×C6).55D6 = C2×C6×D9 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).55D6 | 216,108 |
(C3×C6).56D6 = C22×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).56D6 | 216,112 |
(C3×C6).57D6 = C3×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).57D6 | 216,140 |
(C3×C6).58D6 = C12×C3⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).58D6 | 216,141 |
(C3×C6).59D6 = C3×C12⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).59D6 | 216,142 |
(C3×C6).60D6 = C6×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).60D6 | 216,143 |
(C3×C6).61D6 = C3×C32⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).61D6 | 216,144 |
(C3×C6).62D6 = C33⋊8Q8 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).62D6 | 216,145 |
(C3×C6).63D6 = C4×C33⋊C2 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).63D6 | 216,146 |
(C3×C6).64D6 = C33⋊12D4 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).64D6 | 216,147 |
(C3×C6).65D6 = C2×C33⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).65D6 | 216,148 |
(C3×C6).66D6 = C33⋊15D4 | φ: D6/C6 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).66D6 | 216,149 |
(C3×C6).67D6 = C32×Dic6 | central extension (φ=1) | 72 | | (C3xC6).67D6 | 216,135 |
(C3×C6).68D6 = S3×C3×C12 | central extension (φ=1) | 72 | | (C3xC6).68D6 | 216,136 |
(C3×C6).69D6 = C32×D12 | central extension (φ=1) | 72 | | (C3xC6).69D6 | 216,137 |
(C3×C6).70D6 = Dic3×C3×C6 | central extension (φ=1) | 72 | | (C3xC6).70D6 | 216,138 |
(C3×C6).71D6 = C32×C3⋊D4 | central extension (φ=1) | 36 | | (C3xC6).71D6 | 216,139 |