d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3xC2xC18 | 72 | S3xC2xC18 | 216,109 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC18):1S3 = C9xS4 | φ: S3/C1 → S3 ⊆ Aut C2xC18 | 36 | 3 | (C2xC18):1S3 | 216,89 |
(C2xC18):2S3 = C9:S4 | φ: S3/C1 → S3 ⊆ Aut C2xC18 | 36 | 6+ | (C2xC18):2S3 | 216,93 |
(C2xC18):3S3 = C9xC3:D4 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 36 | 2 | (C2xC18):3S3 | 216,58 |
(C2xC18):4S3 = C6.D18 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 108 | (C2xC18):4S3 | 216,70 | |
(C2xC18):5S3 = C22xC9:S3 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 108 | (C2xC18):5S3 | 216,112 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC18).S3 = C9.S4 | φ: S3/C1 → S3 ⊆ Aut C2xC18 | 54 | 6+ | (C2xC18).S3 | 216,21 |
(C2xC18).2S3 = C2xDic27 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 216 | (C2xC18).2S3 | 216,7 | |
(C2xC18).3S3 = C27:D4 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 108 | 2 | (C2xC18).3S3 | 216,8 |
(C2xC18).4S3 = C22xD27 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 108 | (C2xC18).4S3 | 216,23 | |
(C2xC18).5S3 = C2xC9:Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC18 | 216 | (C2xC18).5S3 | 216,69 | |
(C2xC18).6S3 = Dic3xC18 | central extension (φ=1) | 72 | (C2xC18).6S3 | 216,56 |