Extensions 1→N→G→Q→1 with N=C2xC18 and Q=S3

Direct product G=NxQ with N=C2xC18 and Q=S3
dρLabelID
S3xC2xC1872S3xC2xC18216,109

Semidirect products G=N:Q with N=C2xC18 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC18):1S3 = C9xS4φ: S3/C1S3 ⊆ Aut C2xC18363(C2xC18):1S3216,89
(C2xC18):2S3 = C9:S4φ: S3/C1S3 ⊆ Aut C2xC18366+(C2xC18):2S3216,93
(C2xC18):3S3 = C9xC3:D4φ: S3/C3C2 ⊆ Aut C2xC18362(C2xC18):3S3216,58
(C2xC18):4S3 = C6.D18φ: S3/C3C2 ⊆ Aut C2xC18108(C2xC18):4S3216,70
(C2xC18):5S3 = C22xC9:S3φ: S3/C3C2 ⊆ Aut C2xC18108(C2xC18):5S3216,112

Non-split extensions G=N.Q with N=C2xC18 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC18).S3 = C9.S4φ: S3/C1S3 ⊆ Aut C2xC18546+(C2xC18).S3216,21
(C2xC18).2S3 = C2xDic27φ: S3/C3C2 ⊆ Aut C2xC18216(C2xC18).2S3216,7
(C2xC18).3S3 = C27:D4φ: S3/C3C2 ⊆ Aut C2xC181082(C2xC18).3S3216,8
(C2xC18).4S3 = C22xD27φ: S3/C3C2 ⊆ Aut C2xC18108(C2xC18).4S3216,23
(C2xC18).5S3 = C2xC9:Dic3φ: S3/C3C2 ⊆ Aut C2xC18216(C2xC18).5S3216,69
(C2xC18).6S3 = Dic3xC18central extension (φ=1)72(C2xC18).6S3216,56

׿
x
:
Z
F
o
wr
Q
<