Extensions 1→N→G→Q→1 with N=C2×C18 and Q=S3

Direct product G=N×Q with N=C2×C18 and Q=S3
dρLabelID
S3×C2×C1872S3xC2xC18216,109

Semidirect products G=N:Q with N=C2×C18 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊1S3 = C9×S4φ: S3/C1S3 ⊆ Aut C2×C18363(C2xC18):1S3216,89
(C2×C18)⋊2S3 = C9⋊S4φ: S3/C1S3 ⊆ Aut C2×C18366+(C2xC18):2S3216,93
(C2×C18)⋊3S3 = C9×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C18362(C2xC18):3S3216,58
(C2×C18)⋊4S3 = C6.D18φ: S3/C3C2 ⊆ Aut C2×C18108(C2xC18):4S3216,70
(C2×C18)⋊5S3 = C22×C9⋊S3φ: S3/C3C2 ⊆ Aut C2×C18108(C2xC18):5S3216,112

Non-split extensions G=N.Q with N=C2×C18 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C18).S3 = C9.S4φ: S3/C1S3 ⊆ Aut C2×C18546+(C2xC18).S3216,21
(C2×C18).2S3 = C2×Dic27φ: S3/C3C2 ⊆ Aut C2×C18216(C2xC18).2S3216,7
(C2×C18).3S3 = C27⋊D4φ: S3/C3C2 ⊆ Aut C2×C181082(C2xC18).3S3216,8
(C2×C18).4S3 = C22×D27φ: S3/C3C2 ⊆ Aut C2×C18108(C2xC18).4S3216,23
(C2×C18).5S3 = C2×C9⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C18216(C2xC18).5S3216,69
(C2×C18).6S3 = Dic3×C18central extension (φ=1)72(C2xC18).6S3216,56

׿
×
𝔽