direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D102, C2×D51, C34⋊S3, C6⋊D17, C17⋊2D6, C3⋊2D34, C102⋊1C2, C51⋊2C22, sometimes denoted D204 or Dih102 or Dih204, SmallGroup(204,11)
Series: Derived ►Chief ►Lower central ►Upper central
| C51 — D102 |
Generators and relations for D102
G = < a,b | a102=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 102)(2 101)(3 100)(4 99)(5 98)(6 97)(7 96)(8 95)(9 94)(10 93)(11 92)(12 91)(13 90)(14 89)(15 88)(16 87)(17 86)(18 85)(19 84)(20 83)(21 82)(22 81)(23 80)(24 79)(25 78)(26 77)(27 76)(28 75)(29 74)(30 73)(31 72)(32 71)(33 70)(34 69)(35 68)(36 67)(37 66)(38 65)(39 64)(40 63)(41 62)(42 61)(43 60)(44 59)(45 58)(46 57)(47 56)(48 55)(49 54)(50 53)(51 52)
G:=sub<Sym(102)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,102)(2,101)(3,100)(4,99)(5,98)(6,97)(7,96)(8,95)(9,94)(10,93)(11,92)(12,91)(13,90)(14,89)(15,88)(16,87)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,80)(24,79)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(51,52)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,102)(2,101)(3,100)(4,99)(5,98)(6,97)(7,96)(8,95)(9,94)(10,93)(11,92)(12,91)(13,90)(14,89)(15,88)(16,87)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,80)(24,79)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(51,52) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,102),(2,101),(3,100),(4,99),(5,98),(6,97),(7,96),(8,95),(9,94),(10,93),(11,92),(12,91),(13,90),(14,89),(15,88),(16,87),(17,86),(18,85),(19,84),(20,83),(21,82),(22,81),(23,80),(24,79),(25,78),(26,77),(27,76),(28,75),(29,74),(30,73),(31,72),(32,71),(33,70),(34,69),(35,68),(36,67),(37,66),(38,65),(39,64),(40,63),(41,62),(42,61),(43,60),(44,59),(45,58),(46,57),(47,56),(48,55),(49,54),(50,53),(51,52)]])
D102 is a maximal subgroup of
D51⋊2C4 C3⋊D68 C17⋊D12 D204 C51⋊7D4 C2×S3×D17
D102 is a maximal quotient of Dic102 D204 C51⋊7D4
54 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 6 | 17A | ··· | 17H | 34A | ··· | 34H | 51A | ··· | 51P | 102A | ··· | 102P |
| order | 1 | 2 | 2 | 2 | 3 | 6 | 17 | ··· | 17 | 34 | ··· | 34 | 51 | ··· | 51 | 102 | ··· | 102 |
| size | 1 | 1 | 51 | 51 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
54 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + |
| image | C1 | C2 | C2 | S3 | D6 | D17 | D34 | D51 | D102 |
| kernel | D102 | D51 | C102 | C34 | C17 | C6 | C3 | C2 | C1 |
| # reps | 1 | 2 | 1 | 1 | 1 | 8 | 8 | 16 | 16 |
Matrix representation of D102 ►in GL2(𝔽103) generated by
| 41 | 85 |
| 9 | 84 |
| 10 | 4 |
| 1 | 93 |
G:=sub<GL(2,GF(103))| [41,9,85,84],[10,1,4,93] >;
D102 in GAP, Magma, Sage, TeX
D_{102} % in TeX
G:=Group("D102"); // GroupNames label
G:=SmallGroup(204,11);
// by ID
G=gap.SmallGroup(204,11);
# by ID
G:=PCGroup([4,-2,-2,-3,-17,98,3075]);
// Polycyclic
G:=Group<a,b|a^102=b^2=1,b*a*b=a^-1>;
// generators/relations
Export