direct product, metacyclic, supersoluble, monomial, Z-group
Aliases: D5×C7⋊C3, C35⋊3C6, (C7×D5)⋊C3, C7⋊2(C3×D5), C5⋊(C2×C7⋊C3), (C5×C7⋊C3)⋊3C2, SmallGroup(210,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C35 — C5×C7⋊C3 — D5×C7⋊C3 |
C35 — D5×C7⋊C3 |
Generators and relations for D5×C7⋊C3
G = < a,b,c,d | a5=b2=c7=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of D5×C7⋊C3
class | 1 | 2 | 3A | 3B | 5A | 5B | 6A | 6B | 7A | 7B | 14A | 14B | 15A | 15B | 15C | 15D | 35A | 35B | 35C | 35D | |
size | 1 | 5 | 7 | 7 | 2 | 2 | 35 | 35 | 3 | 3 | 15 | 15 | 14 | 14 | 14 | 14 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ10 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ11 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ12 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ13 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ14 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ15 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ16 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ17 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ76+ζ54ζ75+ζ54ζ73+ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ53ζ76+ζ53ζ75+ζ53ζ73+ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ53ζ74+ζ53ζ72+ζ53ζ7+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7+ζ5ζ74+ζ5ζ72+ζ5ζ7 | complex faithful |
ρ18 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ54ζ72+ζ54ζ7+ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ53ζ76+ζ53ζ75+ζ53ζ73+ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ54ζ76+ζ54ζ75+ζ54ζ73+ζ5ζ76+ζ5ζ75+ζ5ζ73 | complex faithful |
ρ19 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ76+ζ53ζ75+ζ53ζ73+ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ54ζ76+ζ54ζ75+ζ54ζ73+ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ54ζ74+ζ54ζ72+ζ54ζ7+ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7+ζ52ζ74+ζ52ζ72+ζ52ζ7 | complex faithful |
ρ20 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ53ζ72+ζ53ζ7+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7+ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ54ζ76+ζ54ζ75+ζ54ζ73+ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ53ζ76+ζ53ζ75+ζ53ζ73+ζ52ζ76+ζ52ζ75+ζ52ζ73 | complex faithful |
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)
G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)>;
G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34) );
G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34)]])
D5×C7⋊C3 is a maximal subgroup of
C35⋊C12
Matrix representation of D5×C7⋊C3 ►in GL5(𝔽211)
1 | 6 | 0 | 0 | 0 |
170 | 177 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
34 | 6 | 0 | 0 | 0 |
124 | 177 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 210 | 190 | 1 |
0 | 0 | 0 | 190 | 1 |
0 | 0 | 210 | 191 | 1 |
14 | 0 | 0 | 0 | 0 |
0 | 14 | 0 | 0 | 0 |
0 | 0 | 191 | 1 | 21 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 20 |
G:=sub<GL(5,GF(211))| [1,170,0,0,0,6,177,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[34,124,0,0,0,6,177,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,210,0,210,0,0,190,190,191,0,0,1,1,1],[14,0,0,0,0,0,14,0,0,0,0,0,191,1,1,0,0,1,0,1,0,0,21,0,20] >;
D5×C7⋊C3 in GAP, Magma, Sage, TeX
D_5\times C_7\rtimes C_3
% in TeX
G:=Group("D5xC7:C3");
// GroupNames label
G:=SmallGroup(210,2);
// by ID
G=gap.SmallGroup(210,2);
# by ID
G:=PCGroup([4,-2,-3,-5,-7,290,487]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^7=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of D5×C7⋊C3 in TeX
Character table of D5×C7⋊C3 in TeX