metacyclic, supersoluble, monomial, Z-group
Aliases: C5⋊F7, D35⋊C3, C35⋊1C6, C7⋊C3⋊D5, C7⋊(C3×D5), (C5×C7⋊C3)⋊1C2, SmallGroup(210,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C35 — C5×C7⋊C3 — C5⋊F7 |
C35 — C5⋊F7 |
Generators and relations for C5⋊F7
G = < a,b,c | a5=b7=c6=1, ab=ba, cac-1=a-1, cbc-1=b5 >
Character table of C5⋊F7
class | 1 | 2 | 3A | 3B | 5A | 5B | 6A | 6B | 7 | 15A | 15B | 15C | 15D | 35A | 35B | 35C | 35D | |
size | 1 | 35 | 7 | 7 | 2 | 2 | 35 | 35 | 6 | 14 | 14 | 14 | 14 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ65 | ζ6 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ6 | ζ65 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ10 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ11 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ12 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ13 | 6 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ14 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -ζ53ζ74-ζ53ζ72-ζ53ζ7-ζ53+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7-ζ52ζ74-ζ52ζ72-ζ52ζ7-ζ52 | -ζ54ζ74-ζ54ζ72-ζ54ζ7-ζ54+ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7-ζ5ζ74-ζ5ζ72-ζ5ζ7-ζ5 | orthogonal faithful |
ρ15 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ53ζ72+ζ53ζ7-ζ52ζ74-ζ52ζ72-ζ52ζ7-ζ52 | -ζ53ζ74-ζ53ζ72-ζ53ζ7-ζ53+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7-ζ5ζ74-ζ5ζ72-ζ5ζ7-ζ5 | -ζ54ζ74-ζ54ζ72-ζ54ζ7-ζ54+ζ5ζ74+ζ5ζ72+ζ5ζ7 | orthogonal faithful |
ρ16 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ54ζ72+ζ54ζ7-ζ5ζ74-ζ5ζ72-ζ5ζ7-ζ5 | -ζ54ζ74-ζ54ζ72-ζ54ζ7-ζ54+ζ5ζ74+ζ5ζ72+ζ5ζ7 | -ζ53ζ74-ζ53ζ72-ζ53ζ7-ζ53+ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7-ζ52ζ74-ζ52ζ72-ζ52ζ7-ζ52 | orthogonal faithful |
ρ17 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -ζ54ζ74-ζ54ζ72-ζ54ζ7-ζ54+ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7-ζ5ζ74-ζ5ζ72-ζ5ζ7-ζ5 | ζ53ζ74+ζ53ζ72+ζ53ζ7-ζ52ζ74-ζ52ζ72-ζ52ζ7-ζ52 | -ζ53ζ74-ζ53ζ72-ζ53ζ7-ζ53+ζ52ζ74+ζ52ζ72+ζ52ζ7 | orthogonal faithful |
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 4 3 7 5 6)(8 29)(9 32 10 35 12 34)(11 31 14 33 13 30)(15 22)(16 25 17 28 19 27)(18 24 21 26 20 23)
G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(8,29)(9,32,10,35,12,34)(11,31,14,33,13,30)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)>;
G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(8,29)(9,32,10,35,12,34)(11,31,14,33,13,30)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23) );
G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,4,3,7,5,6),(8,29),(9,32,10,35,12,34),(11,31,14,33,13,30),(15,22),(16,25,17,28,19,27),(18,24,21,26,20,23)]])
C5⋊F7 is a maximal subgroup of
D5×F7
C5⋊F7 is a maximal quotient of C35⋊3C12
Matrix representation of C5⋊F7 ►in GL6(𝔽211)
104 | 0 | 181 | 30 | 181 | 0 |
30 | 104 | 181 | 0 | 0 | 181 |
30 | 30 | 74 | 0 | 181 | 0 |
0 | 30 | 0 | 104 | 181 | 181 |
30 | 0 | 0 | 30 | 74 | 181 |
0 | 30 | 181 | 30 | 0 | 74 |
0 | 0 | 0 | 0 | 0 | 210 |
1 | 0 | 0 | 0 | 0 | 210 |
0 | 1 | 0 | 0 | 0 | 210 |
0 | 0 | 1 | 0 | 0 | 210 |
0 | 0 | 0 | 1 | 0 | 210 |
0 | 0 | 0 | 0 | 1 | 210 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(211))| [104,30,30,0,30,0,0,104,30,30,0,30,181,181,74,0,0,181,30,0,0,104,30,30,181,0,181,181,74,0,0,181,0,181,181,74],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,210,210,210,210,210,210],[0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C5⋊F7 in GAP, Magma, Sage, TeX
C_5\rtimes F_7
% in TeX
G:=Group("C5:F7");
// GroupNames label
G:=SmallGroup(210,3);
// by ID
G=gap.SmallGroup(210,3);
# by ID
G:=PCGroup([4,-2,-3,-5,-7,290,2883,487]);
// Polycyclic
G:=Group<a,b,c|a^5=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C5⋊F7 in TeX
Character table of C5⋊F7 in TeX