Copied to
clipboard

G = C5⋊F7order 210 = 2·3·5·7

The semidirect product of C5 and F7 acting via F7/C7⋊C3=C2

metacyclic, supersoluble, monomial, Z-group

Aliases: C5⋊F7, D35⋊C3, C351C6, C7⋊C3⋊D5, C7⋊(C3×D5), (C5×C7⋊C3)⋊1C2, SmallGroup(210,3)

Series: Derived Chief Lower central Upper central

C1C35 — C5⋊F7
C1C7C35C5×C7⋊C3 — C5⋊F7
C35 — C5⋊F7
C1

Generators and relations for C5⋊F7
 G = < a,b,c | a5=b7=c6=1, ab=ba, cac-1=a-1, cbc-1=b5 >

35C2
7C3
35C6
7D5
5D7
7C15
7C3×D5
5F7

Character table of C5⋊F7

 class 123A3B5A5B6A6B715A15B15C15D35A35B35C35D
 size 135772235356141414146666
ρ111111111111111111    trivial
ρ21-11111-1-1111111111    linear of order 2
ρ311ζ32ζ311ζ3ζ321ζ32ζ3ζ32ζ31111    linear of order 3
ρ41-1ζ32ζ311ζ65ζ61ζ32ζ3ζ32ζ31111    linear of order 6
ρ511ζ3ζ3211ζ32ζ31ζ3ζ32ζ3ζ321111    linear of order 3
ρ61-1ζ3ζ3211ζ6ζ651ζ3ζ32ζ3ζ321111    linear of order 6
ρ72022-1-5/2-1+5/2002-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ82022-1+5/2-1-5/2002-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ920-1--3-1+-3-1-5/2-1+5/2002ζ32ζ5332ζ52ζ3ζ533ζ52ζ32ζ5432ζ5ζ3ζ543ζ5-1+5/2-1+5/2-1-5/2-1-5/2    complex lifted from C3×D5
ρ1020-1+-3-1--3-1-5/2-1+5/2002ζ3ζ533ζ52ζ32ζ5332ζ52ζ3ζ543ζ5ζ32ζ5432ζ5-1+5/2-1+5/2-1-5/2-1-5/2    complex lifted from C3×D5
ρ1120-1--3-1+-3-1+5/2-1-5/2002ζ32ζ5432ζ5ζ3ζ543ζ5ζ32ζ5332ζ52ζ3ζ533ζ52-1-5/2-1-5/2-1+5/2-1+5/2    complex lifted from C3×D5
ρ1220-1+-3-1--3-1+5/2-1-5/2002ζ3ζ543ζ5ζ32ζ5432ζ5ζ3ζ533ζ52ζ32ζ5332ζ52-1-5/2-1-5/2-1+5/2-1+5/2    complex lifted from C3×D5
ρ1360006600-10000-1-1-1-1    orthogonal lifted from F7
ρ146000-3+35/2-3-35/200-1000053ζ7453ζ7253ζ75352ζ7452ζ7252ζ7ζ53ζ7453ζ7253ζ752ζ7452ζ7252ζ75254ζ7454ζ7254ζ7545ζ745ζ725ζ7ζ54ζ7454ζ7254ζ75ζ745ζ725ζ75    orthogonal faithful
ρ156000-3+35/2-3-35/200-10000ζ53ζ7453ζ7253ζ752ζ7452ζ7252ζ75253ζ7453ζ7253ζ75352ζ7452ζ7252ζ7ζ54ζ7454ζ7254ζ75ζ745ζ725ζ7554ζ7454ζ7254ζ7545ζ745ζ725ζ7    orthogonal faithful
ρ166000-3-35/2-3+35/200-10000ζ54ζ7454ζ7254ζ75ζ745ζ725ζ7554ζ7454ζ7254ζ7545ζ745ζ725ζ753ζ7453ζ7253ζ75352ζ7452ζ7252ζ7ζ53ζ7453ζ7253ζ752ζ7452ζ7252ζ752    orthogonal faithful
ρ176000-3-35/2-3+35/200-1000054ζ7454ζ7254ζ7545ζ745ζ725ζ7ζ54ζ7454ζ7254ζ75ζ745ζ725ζ75ζ53ζ7453ζ7253ζ752ζ7452ζ7252ζ75253ζ7453ζ7253ζ75352ζ7452ζ7252ζ7    orthogonal faithful

Smallest permutation representation of C5⋊F7
On 35 points
Generators in S35
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 4 3 7 5 6)(8 29)(9 32 10 35 12 34)(11 31 14 33 13 30)(15 22)(16 25 17 28 19 27)(18 24 21 26 20 23)

G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(8,29)(9,32,10,35,12,34)(11,31,14,33,13,30)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)>;

G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(8,29)(9,32,10,35,12,34)(11,31,14,33,13,30)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23) );

G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,4,3,7,5,6),(8,29),(9,32,10,35,12,34),(11,31,14,33,13,30),(15,22),(16,25,17,28,19,27),(18,24,21,26,20,23)]])

C5⋊F7 is a maximal subgroup of   D5×F7
C5⋊F7 is a maximal quotient of   C353C12

Matrix representation of C5⋊F7 in GL6(𝔽211)

1040181301810
3010418100181
30307401810
0300104181181
30003074181
03018130074
,
00000210
10000210
01000210
00100210
00010210
00001210
,
000010
001000
100000
000001
000100
010000

G:=sub<GL(6,GF(211))| [104,30,30,0,30,0,0,104,30,30,0,30,181,181,74,0,0,181,30,0,0,104,30,30,181,0,181,181,74,0,0,181,0,181,181,74],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,210,210,210,210,210,210],[0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C5⋊F7 in GAP, Magma, Sage, TeX

C_5\rtimes F_7
% in TeX

G:=Group("C5:F7");
// GroupNames label

G:=SmallGroup(210,3);
// by ID

G=gap.SmallGroup(210,3);
# by ID

G:=PCGroup([4,-2,-3,-5,-7,290,2883,487]);
// Polycyclic

G:=Group<a,b,c|a^5=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C5⋊F7 in TeX
Character table of C5⋊F7 in TeX

׿
×
𝔽