non-abelian, soluble, monomial
Aliases: C9⋊S4, A4⋊D9, (C9×A4)⋊2C2, (C2×C18)⋊2S3, C3.A4⋊1S3, C3.1(C3⋊S4), (C3×A4).2S3, C22⋊1(C9⋊S3), (C2×C6).2(C3⋊S3), SmallGroup(216,93)
Series: Derived ►Chief ►Lower central ►Upper central
C9×A4 — C9⋊S4 |
Generators and relations for C9⋊S4
G = < a,b,c,d,e | a9=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Character table of C9⋊S4
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4 | 6 | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 18A | 18B | 18C | |
size | 1 | 3 | 54 | 2 | 8 | 8 | 8 | 54 | 6 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ5 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ8 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ9 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ10 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ13 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 0 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | 1 | 3 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ17 | 3 | -1 | -1 | 3 | 0 | 0 | 0 | 1 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ18 | 6 | -2 | 0 | 6 | 0 | 0 | 0 | 0 | -2 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | orthogonal lifted from C3⋊S4 |
ρ19 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | orthogonal faithful |
ρ20 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | orthogonal faithful |
ρ21 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 10)(9 11)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 28)(26 29)(27 30)
(1 27)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(1 7 4)(2 8 5)(3 9 6)(10 22 31)(11 23 32)(12 24 33)(13 25 34)(14 26 35)(15 27 36)(16 19 28)(17 20 29)(18 21 30)
(2 9)(3 8)(4 7)(5 6)(10 32)(11 31)(12 30)(13 29)(14 28)(15 36)(16 35)(17 34)(18 33)(19 26)(20 25)(21 24)(22 23)
G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,28)(26,29)(27,30), (1,27)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,7,4)(2,8,5)(3,9,6)(10,22,31)(11,23,32)(12,24,33)(13,25,34)(14,26,35)(15,27,36)(16,19,28)(17,20,29)(18,21,30), (2,9)(3,8)(4,7)(5,6)(10,32)(11,31)(12,30)(13,29)(14,28)(15,36)(16,35)(17,34)(18,33)(19,26)(20,25)(21,24)(22,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,28)(26,29)(27,30), (1,27)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,7,4)(2,8,5)(3,9,6)(10,22,31)(11,23,32)(12,24,33)(13,25,34)(14,26,35)(15,27,36)(16,19,28)(17,20,29)(18,21,30), (2,9)(3,8)(4,7)(5,6)(10,32)(11,31)(12,30)(13,29)(14,28)(15,36)(16,35)(17,34)(18,33)(19,26)(20,25)(21,24)(22,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,10),(9,11),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,28),(26,29),(27,30)], [(1,27),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(1,7,4),(2,8,5),(3,9,6),(10,22,31),(11,23,32),(12,24,33),(13,25,34),(14,26,35),(15,27,36),(16,19,28),(17,20,29),(18,21,30)], [(2,9),(3,8),(4,7),(5,6),(10,32),(11,31),(12,30),(13,29),(14,28),(15,36),(16,35),(17,34),(18,33),(19,26),(20,25),(21,24),(22,23)]])
C9⋊S4 is a maximal subgroup of
D9×S4
C9⋊S4 is a maximal quotient of C18.5S4 C18.6S4 A4⋊Dic9
Matrix representation of C9⋊S4 ►in GL5(𝔽37)
31 | 20 | 0 | 0 | 0 |
17 | 11 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 36 | 36 | 36 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 36 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 36 | 36 | 36 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
36 | 36 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(37))| [31,17,0,0,0,20,11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,0,36,0,0,0,1,36,0],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,36,0,1,0,0,36,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,36,0,0,0,0,36,1,0,0,0,36,0],[1,36,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C9⋊S4 in GAP, Magma, Sage, TeX
C_9\rtimes S_4
% in TeX
G:=Group("C9:S4");
// GroupNames label
G:=SmallGroup(216,93);
// by ID
G=gap.SmallGroup(216,93);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-2,2,49,542,122,867,3244,1630,1949,2927]);
// Polycyclic
G:=Group<a,b,c,d,e|a^9=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C9⋊S4 in TeX
Character table of C9⋊S4 in TeX