Extensions 1→N→G→Q→1 with N=D5×C10 and Q=C2

Direct product G=N×Q with N=D5×C10 and Q=C2
dρLabelID
D5×C2×C1040D5xC2xC10200,50

Semidirect products G=N:Q with N=D5×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C10)⋊1C2 = C522D4φ: C2/C1C2 ⊆ Out D5×C10404-(D5xC10):1C2200,24
(D5×C10)⋊2C2 = C5⋊D20φ: C2/C1C2 ⊆ Out D5×C10204+(D5xC10):2C2200,25
(D5×C10)⋊3C2 = C5×D20φ: C2/C1C2 ⊆ Out D5×C10402(D5xC10):3C2200,29
(D5×C10)⋊4C2 = C5×C5⋊D4φ: C2/C1C2 ⊆ Out D5×C10202(D5xC10):4C2200,31
(D5×C10)⋊5C2 = C2×D52φ: C2/C1C2 ⊆ Out D5×C10204+(D5xC10):5C2200,49

Non-split extensions G=N.Q with N=D5×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C10).1C2 = D5×Dic5φ: C2/C1C2 ⊆ Out D5×C10404-(D5xC10).1C2200,22
(D5×C10).2C2 = C10×F5φ: C2/C1C2 ⊆ Out D5×C10404(D5xC10).2C2200,45
(D5×C10).3C2 = C2×D5.D5φ: C2/C1C2 ⊆ Out D5×C10404(D5xC10).3C2200,46
(D5×C10).4C2 = D5×C20φ: trivial image402(D5xC10).4C2200,28

׿
×
𝔽