Copied to
clipboard

G = C2xD5.D5order 200 = 23·52

Direct product of C2 and D5.D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2xD5.D5, D5:Dic5, D10.D5, C10:Dic5, C10:3F5, D5.2D10, C5:(C2xDic5), C5:5(C2xF5), (C5xC10):2C4, (C5xD5):5C4, C52:4(C2xC4), (D5xC10).3C2, (C5xD5).3C22, SmallGroup(200,46)

Series: Derived Chief Lower central Upper central

C1C52 — C2xD5.D5
C1C5C52C5xD5D5.D5 — C2xD5.D5
C52 — C2xD5.D5
C1C2

Generators and relations for C2xD5.D5
 G = < a,b,c,d,e | a2=b5=c2=d5=1, e2=b-1c, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b2, cd=dc, ece-1=bc, ede-1=d-1 >

Subgroups: 160 in 34 conjugacy classes, 17 normal (15 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D5, Dic5, F5, D10, C2xDic5, C2xF5, D5.D5, C2xD5.D5
5C2
5C2
4C5
5C22
25C4
25C4
4C10
5C10
5C10
25C2xC4
5F5
5F5
5C2xC10
5Dic5
5Dic5
5C2xDic5
5C2xF5

Character table of C2xD5.D5

 class 12A2B2C4A4B4C4D5A5B5C5D5E5F5G10A10B10C10D10E10F10G10H10I10J10K
 size 1155252525252244444224444410101010
ρ111111111111111111111111111    trivial
ρ21-11-11-11-11111111-1-1-1-1-1-1-111-1-1    linear of order 2
ρ31-11-1-11-111111111-1-1-1-1-1-1-111-1-1    linear of order 2
ρ41111-1-1-1-1111111111111111111    linear of order 2
ρ51-1-11i-i-ii1111111-1-1-1-1-1-1-1-1-111    linear of order 4
ρ611-1-1ii-i-i11111111111111-1-1-1-1    linear of order 4
ρ711-1-1-i-iii11111111111111-1-1-1-1    linear of order 4
ρ81-1-11-iii-i1111111-1-1-1-1-1-1-1-1-111    linear of order 4
ρ92-22-20000-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1-5/21-5/21+5/21-5/21+5/2-21+5/21-5/2-1+5/2-1-5/21-5/21+5/2    orthogonal lifted from D10
ρ1022220000-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ1122220000-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ122-22-20000-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1+5/21+5/21-5/21+5/21-5/2-21-5/21+5/2-1-5/2-1+5/21+5/21-5/2    orthogonal lifted from D10
ρ132-2-220000-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1+5/21+5/21-5/21+5/21-5/2-21-5/21+5/21+5/21-5/2-1-5/2-1+5/2    symplectic lifted from Dic5, Schur index 2
ρ142-2-220000-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1-5/21-5/21+5/21-5/21+5/2-21+5/21-5/21-5/21+5/2-1+5/2-1-5/2    symplectic lifted from Dic5, Schur index 2
ρ1522-2-20000-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/21+5/21-5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ1622-2-20000-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/21-5/21+5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ174400000044-1-1-1-1-144-1-1-1-1-10000    orthogonal lifted from F5
ρ184-400000044-1-1-1-1-1-4-4111110000    orthogonal lifted from C2xF5
ρ194-4000000-1-5-1+5-1ζ54+2ζ53+1525+1ζ53+2ζ5+15452+11-51+553525545351ζ54525ζ5453520000    complex faithful
ρ2044000000-1-5-1+5-1ζ54+2ζ53+1525+1ζ53+2ζ5+15452+1-1+5-1-5ζ54+2ζ53+15452+1-1ζ53+2ζ5+1525+10000    complex lifted from D5.D5
ρ214-4000000-1+5-1-5-15452+1ζ53+2ζ5+1ζ54+2ζ53+1525+11+51-554535ζ545352153525ζ545250000    complex faithful
ρ224-4000000-1-5-1+5-1525+1ζ54+2ζ53+15452+1ζ53+2ζ5+11-51+5ζ545352ζ54525154535535250000    complex faithful
ρ2344000000-1+5-1-5-1ζ53+2ζ5+15452+1525+1ζ54+2ζ53+1-1-5-1+5ζ53+2ζ5+1ζ54+2ζ53+1-1525+15452+10000    complex lifted from D5.D5
ρ2444000000-1-5-1+5-1525+1ζ54+2ζ53+15452+1ζ53+2ζ5+1-1+5-1-5525+1ζ53+2ζ5+1-15452+1ζ54+2ζ53+10000    complex lifted from D5.D5
ρ2544000000-1+5-1-5-15452+1ζ53+2ζ5+1ζ54+2ζ53+1525+1-1-5-1+55452+1525+1-1ζ54+2ζ53+1ζ53+2ζ5+10000    complex lifted from D5.D5
ρ264-4000000-1+5-1-5-1ζ53+2ζ5+15452+1525+1ζ54+2ζ53+11+51-5ζ54525535251ζ545352545350000    complex faithful

Smallest permutation representation of C2xD5.D5
On 40 points
Generators in S40
(1 12)(2 13)(3 14)(4 15)(5 11)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 7)(2 6)(3 10)(4 9)(5 8)(11 18)(12 17)(13 16)(14 20)(15 19)(21 28)(22 27)(23 26)(24 30)(25 29)(31 38)(32 37)(33 36)(34 40)(35 39)
(1 4 2 5 3)(6 8 10 7 9)(11 14 12 15 13)(16 18 20 17 19)(21 25 24 23 22)(26 27 28 29 30)(31 35 34 33 32)(36 37 38 39 40)
(1 40 8 35)(2 38 7 32)(3 36 6 34)(4 39 10 31)(5 37 9 33)(11 27 19 23)(12 30 18 25)(13 28 17 22)(14 26 16 24)(15 29 20 21)

G:=sub<Sym(40)| (1,12)(2,13)(3,14)(4,15)(5,11)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,7)(2,6)(3,10)(4,9)(5,8)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39), (1,4,2,5,3)(6,8,10,7,9)(11,14,12,15,13)(16,18,20,17,19)(21,25,24,23,22)(26,27,28,29,30)(31,35,34,33,32)(36,37,38,39,40), (1,40,8,35)(2,38,7,32)(3,36,6,34)(4,39,10,31)(5,37,9,33)(11,27,19,23)(12,30,18,25)(13,28,17,22)(14,26,16,24)(15,29,20,21)>;

G:=Group( (1,12)(2,13)(3,14)(4,15)(5,11)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,7)(2,6)(3,10)(4,9)(5,8)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39), (1,4,2,5,3)(6,8,10,7,9)(11,14,12,15,13)(16,18,20,17,19)(21,25,24,23,22)(26,27,28,29,30)(31,35,34,33,32)(36,37,38,39,40), (1,40,8,35)(2,38,7,32)(3,36,6,34)(4,39,10,31)(5,37,9,33)(11,27,19,23)(12,30,18,25)(13,28,17,22)(14,26,16,24)(15,29,20,21) );

G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,11),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,7),(2,6),(3,10),(4,9),(5,8),(11,18),(12,17),(13,16),(14,20),(15,19),(21,28),(22,27),(23,26),(24,30),(25,29),(31,38),(32,37),(33,36),(34,40),(35,39)], [(1,4,2,5,3),(6,8,10,7,9),(11,14,12,15,13),(16,18,20,17,19),(21,25,24,23,22),(26,27,28,29,30),(31,35,34,33,32),(36,37,38,39,40)], [(1,40,8,35),(2,38,7,32),(3,36,6,34),(4,39,10,31),(5,37,9,33),(11,27,19,23),(12,30,18,25),(13,28,17,22),(14,26,16,24),(15,29,20,21)]])

C2xD5.D5 is a maximal subgroup of   Dic5xF5  D5.D20  D5.Dic10  C20:5F5  D10.D10  C2xD5xF5
C2xD5.D5 is a maximal quotient of   C20.14F5  C20.12F5  C20:5F5  C102.C4  D10.D10

Matrix representation of C2xD5.D5 in GL4(F41) generated by

40000
04000
00400
00040
,
16000
01800
00370
00010
,
01800
16000
00010
00370
,
37000
03700
00100
00010
,
00310
00031
0400
4000
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[16,0,0,0,0,18,0,0,0,0,37,0,0,0,0,10],[0,16,0,0,18,0,0,0,0,0,0,37,0,0,10,0],[37,0,0,0,0,37,0,0,0,0,10,0,0,0,0,10],[0,0,0,4,0,0,4,0,31,0,0,0,0,31,0,0] >;

C2xD5.D5 in GAP, Magma, Sage, TeX

C_2\times D_5.D_5
% in TeX

G:=Group("C2xD5.D5");
// GroupNames label

G:=SmallGroup(200,46);
// by ID

G=gap.SmallGroup(200,46);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,20,643,3004,1014]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^5=1,e^2=b^-1*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^2,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C2xD5.D5 in TeX
Character table of C2xD5.D5 in TeX

׿
x
:
Z
F
o
wr
Q
<