Extensions 1→N→G→Q→1 with N=S3×C18 and Q=C2

Direct product G=N×Q with N=S3×C18 and Q=C2
dρLabelID
S3×C2×C1872S3xC2xC18216,109

Semidirect products G=N:Q with N=S3×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C18)⋊1C2 = C9×D12φ: C2/C1C2 ⊆ Out S3×C18722(S3xC18):1C2216,48
(S3×C18)⋊2C2 = C9×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C18362(S3xC18):2C2216,58
(S3×C18)⋊3C2 = D6⋊D9φ: C2/C1C2 ⊆ Out S3×C18724-(S3xC18):3C2216,31
(S3×C18)⋊4C2 = C9⋊D12φ: C2/C1C2 ⊆ Out S3×C18364+(S3xC18):4C2216,32
(S3×C18)⋊5C2 = C2×S3×D9φ: C2/C1C2 ⊆ Out S3×C18364+(S3xC18):5C2216,101

Non-split extensions G=N.Q with N=S3×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C18).C2 = S3×Dic9φ: C2/C1C2 ⊆ Out S3×C18724-(S3xC18).C2216,30
(S3×C18).2C2 = S3×C36φ: trivial image722(S3xC18).2C2216,47

׿
×
𝔽