Extensions 1→N→G→Q→1 with N=C3×C9 and Q=D4

Direct product G=N×Q with N=C3×C9 and Q=D4
dρLabelID
D4×C3×C9108D4xC3xC9216,76

Semidirect products G=N:Q with N=C3×C9 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1D4 = C3⋊D36φ: D4/C2C22 ⊆ Aut C3×C9364+(C3xC9):1D4216,29
(C3×C9)⋊2D4 = D6⋊D9φ: D4/C2C22 ⊆ Aut C3×C9724-(C3xC9):2D4216,31
(C3×C9)⋊3D4 = C9⋊D12φ: D4/C2C22 ⊆ Aut C3×C9364+(C3xC9):3D4216,32
(C3×C9)⋊4D4 = C9×D12φ: D4/C4C2 ⊆ Aut C3×C9722(C3xC9):4D4216,48
(C3×C9)⋊5D4 = C3×D36φ: D4/C4C2 ⊆ Aut C3×C9722(C3xC9):5D4216,46
(C3×C9)⋊6D4 = C36⋊S3φ: D4/C4C2 ⊆ Aut C3×C9108(C3xC9):6D4216,65
(C3×C9)⋊7D4 = C9×C3⋊D4φ: D4/C22C2 ⊆ Aut C3×C9362(C3xC9):7D4216,58
(C3×C9)⋊8D4 = C3×C9⋊D4φ: D4/C22C2 ⊆ Aut C3×C9362(C3xC9):8D4216,57
(C3×C9)⋊9D4 = C6.D18φ: D4/C22C2 ⊆ Aut C3×C9108(C3xC9):9D4216,70


׿
×
𝔽